
© 2017 SEC Consult | All rights reserved

©
 f
o

to
li
a

4
1

7
0

6
5

3
0

The Art of Fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• René Freingruber (r.freingruber@sec-consult.com)

• Twitter: @ReneFreingruber

• Security Consultant at SEC Consult

• Reverse Engineering, Exploit development, Fuzzing

• Trainer at SEC Consult

• Secure Coding in C/C++, Reverse Engineering

• Red Teaming, Windows Security

• Speaker at conferences:

• CanSecWest, DeepSec, 31C3, Hacktivity, BSides Vienna, Ruxcon, ToorCon,

NorthSec, IT-SeCX, QuBit, DSS ITSEC, ZeroNights, Owasp Chapter, …

• Topics: EMET, Application Whitelisting, Hacking Kerio Firewalls, Fuzzing Mimikatz, …

Introduction

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

mailto:r.freingruber@sec-consult.com

© 2017 SEC Consult | All rights reserved

Vienna (HQ) | AT

Wiener Neustadt | AT

Vilnius | LT

Berlin| DE
Montreal | CA

Singapore | SG

Moscow | RU

Zurich | CH

ADVISOR FOR YOUR INFORMATION SECURITY

SEC Consult Offices

SEC Consult Clients

Bangkok | TH

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

Founded 2002

Leading in IT-Security Services and

Consulting

Strong customer base in Europe and Asia

70+ Security experts

400+ Security audits per year

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Fuzzing

© 2017 SEC Consult | All rights reserved

Definition of fuzzing (source Wikipedia):

Fuzzing or fuzz testing is an automated software testing

technique that involves providing invalid, unexpected, or

random data as inputs to a computer program. The program is

then monitored for exceptions such as crashes, or failing

built-in code assertions or for finding potential memory

leaks.

Fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Why do we need Fuzzing?

Microsoft Security Development Lifecycle (SDL) Process

Source: https://www.microsoft.com/en-us/SDL/process/verification.aspx

I also recommend fuzzing during implementation

Example: You finished a complex task and you are not sure if
it behaves correctly and is secure

 Start a fuzzer over night / the weekend Check corpus

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://www.microsoft.com/en-us/SDL/process/verification.aspx

© 2017 SEC Consult | All rights reserved

SDL Phase 4 Security Requirements

Where input to file parsing code could have crossed a trust boundary, file fuzzing

must be performed on that code. […]

• An Optimized set of templates must be used. Template optimization is based on

the maximum amount of code coverage of the parser with the minimum number of

templates. Optimized templates have been shown to double fuzzing effectiveness

in studies. A minimum of 500,000 iterations, and have fuzzed at least 250,000

iterations since the last bug found/fixed that meets the SDL Bug Bar.

Why do we need Fuzzing?

Source: https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.aspx

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.aspx

© 2017 SEC Consult | All rights reserved

• Advantages:

• Very fast (in most cases much faster than manual source code review)

• You don’t have to pay a human, only the power consumption of a computer

• It runs 24 hours / 7 days, a human works only 8 hours / 5 days

• Scalable (want to find more bugs? Start 100 fuzzing machines instead of 1)

• Disadvantages:

• Deep bugs (lots of pre-conditions) are hard to find

• Typically you can’t find business logic bugs

Fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Successful Fuzzing Examples

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: Real-world EnCase
Imager Fuzzing (Vulnerability
found by SEC Consult
employee Wolfgang Ettlinger)

Runtime: 29 sec

Description: See real-world
fuzzing in action.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Exploitability of the vulnerability

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• AutoIt definition (https://www.autoitscript.com):

AutoIt v3 is a freeware BASIC-like scripting

language designed for automating the Windows GUI and

general scripting. It uses a combination of

simulated keystrokes, mouse movement and

window/control manipulation in order to automate

tasks …

AutoIt

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://www.autoitscript.com/

© 2017 SEC Consult | All rights reserved

AutoIt Demo Source Code

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Another use case: Popup Killer

• During fuzzing applications often spawn error message; popup killer closes them

• Another implementation can be found in CERT Basic Fuzzing Framework (BFF)

Windows Setup files (C++ code to monitor for message box events)

AutoIt

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: CS GO minimize crash

Runtime: 2 min 16 sec

Description: See real-world

example in action.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Such straight-forward fuzzing is very often very successful!

• Example success stories:

• Encase http://blog.sec-consult.com/2017/05/chainsaw-of-custody-manipulating.html

• Counterstrike https://hernan.de/blog/2017/07/07/lock-and-load-exploiting-counter-
strike-via-bsp-map-files/

• Many others!

• But can we do better?

• What problems do you see in such fuzzing approaches?

• GUI automation is very slow

• Documentation and Specs must be read to write the fuzzer Time consuming task!

Recap

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

http://blog.sec-consult.com/2017/05/chainsaw-of-custody-manipulating.html
https://hernan.de/blog/2017/07/07/lock-and-load-exploiting-counter-strike-via-bsp-map-files/

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Feedback-based Fuzzing

© 2017 SEC Consult | All rights reserved

• Problem: We need to read the specification / documentation to write

the fuzzer

• Solution: Use feedback from the application

• What do you think is useful feedback?

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Consider this pseudocode:

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Consider this pseudocode:

Feedback based fuzzing

Fuzzing Queue:

{<empty>}

Random fuzzer action:

Queue is empty, so create a
random input

Full input:

foobar

Full output:

Please enter some command

 New output, store the
associated input in fuzzing queue
(A)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Consider this pseudocode:

Feedback based fuzzing

Fuzzing Queue:

{A}

Random fuzzer action:

Take A and modify it (uppercase)

Full input:

FOOBAR

Full output:

Please enter some command

 Output already known, so don‘t
add input to Queue

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Consider this pseudocode:

Feedback based fuzzing

Fuzzing Queue:

{A}

Random fuzzer action:

Take A and modify it (replace it)

Full input:

command

Full output:

Please enter some command

You entered command!

 New output, so add input to
queue (as B)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Consider this pseudocode:

Feedback based fuzzing

Fuzzing Queue:

{A,B}

Random fuzzer action:

Take B and append random value

Full input:

Command

123

Full output:

Please enter some command

You entered command!

 Output already known, do
nothing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Consider this pseudocode:

Feedback based fuzzing

Fuzzing Queue:

{A,B}

Random fuzzer action:

Take A and append random value

Full input:

foobar

123

Full output:

Please enter some command

 Output already known, do
nothing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Consider this pseudocode:

Feedback based fuzzing

Fuzzing Queue:

{A,B}

Random fuzzer action:

Take B and append random value

Full input:

command

subcommand

Full output:

Please enter some command

You entered command!

You entered subcommand!

 New output, store input as C

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Consider this pseudocode:

Feedback based fuzzing

Fuzzing Queue:

{A,B,C}

Random fuzzer action:

Take C and append random value

Full input:

Command

subcommand

trigger

Full output:

Please enter some command

You entered command!

You entered subcommand!

You entered trigger!

 Crash

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• I was often successful with feedback based on text-output

• Example:

• SECCON 2016 CTF – Chat binary ; nearly all CTF binaries

• Embedded hardware admin console (text-based applications)

• Pro:

• Very simple & fast to implement

• Normal application runtime during fuzzing (no performance lose)

• Con:

• Not always applicable (application does not give output messages)

• If two different behaviors do not result in different output it‘s useless

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Hints for output based fuzzing:

1. Remove default output “unknown command”

• Prevents filling the fuzzing queue with useless commands

2. Removing user-reflected output can sometimes help

• Example: “login MyUser1” => Output: “Hello MyUser1”

 Two different users will have “Hello MyUser1” and “Hello MyUser2” Two

entries in the fuzzing queue (depends on situation if we want this or not)

 Solution: Hook fprintf (and others) to just print the format string (“Hello %s\n”)

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Hooking fprintf:

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Without With

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• LD_PRELOAD and similar techniques can be used to redirect network traffic

to files for fuzzing

• Many fuzzers only support input via files or stdin (and not network packets)

• Check: https://github.com/zardus/preeny

• But it’s error prone

• Maybe a better alternative: https://github.com/jdbirdwell/afl

• We can also change the heap implementation and other interesting

functions…. But more to this later

• On Windows use Detours or Dynamic Instrumentation Frameworks (see later)

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://github.com/zardus/preeny
https://github.com/jdbirdwell/afl

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: Find the flaw(s) in
SECCON CTF binary

Runtime: 1 min 16 sec

Description: Try to find
the flaw(s) which are
triggered during
execution.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

 Now consider this pseudocode

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

 Input „command\n“results in the orange code-coverage output

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

 Same for „command\nsubcommand\n“

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

 And so on…

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm AFL)

Methods to measure code-coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• One of the most famous file-format fuzzers

• Developed by Michal Zalewski

• Instruments application during compile time (GCC or LLVM)

• Binary-only targets can be emulated / instrumented with qemu

• Forks exist for PIN, DynamoRio, DynInst, syzygy, IntelPT, …

• Simple to use!

• Good designed! (very fast & good heuristics)

• Strategy:

1. Start with a small min-set of input sample files

2. Mutate “random” input file from queue like a dumb fuzzer

3. If mutated file reaches new path(s), add it to queue

American Fuzzy Lop - AFL

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Consider this code (x = argc):

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Basic Blocks:

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Just use afl-gcc instead of gcc…

Feedback based fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Result:

Feedback based fuzzing

Store old

register values

Instrumentation

Restore old

register values

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Instrumentation tracks edge coverage, injected code at every basic block:

 AFL can distinguish between

• A->B->C->D->E (tuples: AB, BC, CD, DE)

• A->B->D->C->E (tuples: AB, BD, DC, CE)

American Fuzzy Lop - AFL

cur_location = <compile_time_random_value>;

bitmap[(cur_location ^ prev_location) % BITMAP_SIZE]++;

prev_location = cur_location >> 1;

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Instrumentation tracks edge coverage, injected code at every basic block:

 AFL can distinguish between

• A->B->C->D->E (tuples: AB, BC, CD, DE)

• A->B->D->C->E (tuples: AB, BD, DC, CE)

 Without shifting A->B and B->A are indistinguishable

American Fuzzy Lop - AFL

cur_location = <compile_time_random_value>;

bitmap[(cur_location ^ prev_location) % BITMAP_SIZE]++;

prev_location = cur_location >> 1;

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

Source:

http://lcamtuf.coredump.cx/afl_

gzip.png

Without instrumentation just the

first level will be discovered (or it

would take an extremely long time)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• We can either start fuzzing with an empty input folder or with downloaded /

generated input files

• Empty file:
• Let AFL identify the complete format (unknown target binaries)

• Can be very slow

• Downloaded sample files:
• Much faster because AFL doesn‘t have to find the file format structure itself

• Bing API to crawl the web (Hint: Don‘t use DNS of your provider …)

• Other good sources: Unit-tests, bug report pages, …

• Problem: Many sample files execute the same code Corpus Distillation

Corpus Distillation

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Steps for fuzzing with AFL:

1. Remove input files with same functinality:
Hint: Call it after tmin again (cmin is a heuristic)
./afl-cmin –i testcase_dir –o testcase_out_dir

-- /path/to/tested/program [...program's cmdline...]

2. Reduce file size of input files:
./afl-tmin –i testcase_file –o testcase_out_file

–- /path/to/tested/program [...program's cmdline...]

3. Start fuzzing:
./afl-fuzz -i testcase_dir -o findings_dir

-- /path/to/tested/program [...program's cmdline...] @@

American Fuzzy Lop - AFL

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: Fuzzing FFMPEG
with AFL

Runtime: 7 min 33 sec

Description: See the AFL
workflow (afl-cmin, afl-
tmin, afl-fuzz) in action

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

AFL with CVE-2009-0385 (FFMPEG)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• AFL input with invalid 4xm file (strk chunk changed to strj)

• AFL still finds the vulnerability!

• Level 1 identifies correct “strk” chunk

• Level 2 based on level 1 output AFL finds the vulnerability (triggered by 0xffffffff)

AFL with CVE-2009-0385 (FFMPEG)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

LibFuzzer

• LibFuzzer – Similar concept to AFL but in-memory fuzzing

• Requires LLVM SanitizerCoverage + writing small fuzzer-functions

• LibFuzzer is more the Fuzzer for developers

• AFL fuzzes the execution path of a binary (no modification required)

• LibFuzzer fuzzes the execution path of a specific function (minimal
code modifications required)

• Fuzz function1 which processes data format 1 Corpus 1

• Fuzz function2 which processes data format 2 Corpus 2

• AFL can be also do in-memory fuzzing (persistent mode)

• Highly recommended tutorial: http://tutorial.libfuzzer.info

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

http://tutorial.libfuzzer.info/

© 2017 SEC Consult | All rights reserved

LibFuzzer

Source: http://tutorial.libfuzzer.info

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: LibFuzzer vs.
OpenSSL (Heartbleed)

Runtime: 41 sec

Description: See how
LibFuzzer can be used
to find heartbleed in
several seconds.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm AFL)

2. Emulation of binary (e.g. with qemu)

Methods to measure code-coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

AFL qemu mode

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

AFL qemu mode

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

AFL qemu mode

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm AFL)

2. Emulation of binary (e.g. with qemu)

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful

in some situations)

Methods to measure code-coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: Breakpoint
instrumentation of Adobe
Reader

Runtime: 3 min 59 sec

Description: See how to
use breakpoints and a
debugger to get code-
coverage. See limitations
of this approach.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Disadvantage:

• It’s very slow

• Statically setting breakpoints can speedup the process, but it’s still

slow because of the debugger process switches

• Only really applicable if we remove a breakpoint after the first hit

We only measure code-coverage (without a hit-count), edge-

coverage not possible or extremely slow

• On-disk files are modified (statically), which can be detected with

checksums (e.g. Adobe Reader .api files)

Code-Coverage via Breakpoints

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Advantage:

• Minset calculation

• Detection if a new file has new code-coverage is very fast (native

runtime) because we statically set breakpoints for unexplored code

and run the application without a debugger

• If it crashes we know it hit one of our breakpoints and therefore

contains unexplored code

• Often useful during reverse engineering (E.g. dump registers at

every breakpoint, see later demo)

Code-Coverage via Breakpoints

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm AFL)

2. Emulation of binary (e.g. with qemu)

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful

in some situations)

4. Dynamic instrumentation of compiled application (no source code required;

tools: DynamoRio, PIN, Valgrind, Frida, …)

Methods to measure code-coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Dynamic runtime manipulation of instructions of a running application!

• Many default tools are shipped with these frameworks

• drrun.exe –t drcov -- calc.exe

• drrun.exe –t my_tool.dll -- calc.exe

• pin -t inscount.so -- /bin/ls

• Register callbacks, which are trigger at specific events (new basic block / instruction which
gets moved into code cache, load of module, exit of process, …)

• At callback (e.g. new basic block), we can further add instructions to the basic block which
get executed every time the basic block gets executed!

• Transformation time (Instrumentation Function): Analyzing a BB the first time (called once)

• Execution time (Analysis Function): Executed always before instruction gets executed

Dynamic Instrumentation Frameworks

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

DynamoRIO

Source: The DynamoRIO Dynamic Tool Platform, Derek Bruening, Google

Transformation time

Execution time

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

DynamoRIO

• For transformation time callbacks can be registered

• E.g.: drmgr_register_bb_instrumentation_event()

• For execution time we have two possibilities

• Clean calls: save full context (registers) and call a C function (slow)

• Inject assembler instructions (fast)

• Context not saved, tool writer must take care himself

• Registers can be “spilled” (can be used by own instructions without losing old state)

• DynamoRio takes care of selecting good registers, saving and restoring them

• Nudges can be send to the process & callbacks can react on them

• Example: Turn logging on after the application started

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Example: Start Adobe Reader, load PDF file, exit Adobe Reader, extract coverage data
(Processing 25 PDFs with one single CPU core)

• Runtime without DynamoRio: ~30-40 seconds

• BasicBlock coverage (no hit count): 105 seconds
• Instrumentation only during transformation into code cache (transformation time)

• BasicBlock coverage (hit count): 165 seconds
• Instrumentation on basic block level (execution time)

• Edge coverage (hit count): 246 seconds

• Instrumentation on basic block level (many instructions required to save and
restore required registers for instrumentation code) (execution time)

DynamoRIO

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• PIN is another dynamic instrumentation framework (older)

• Currently more people use PIN (more examples are available)

• DynamoRio is noticeable faster than PIN

• But PIN is more reliable

• DynamoRio can’t start Encase Imager, PIN can

• DynamoRio can’t start CS GO, PIN can

• During client writing I noticed several strange behaviors of DynamoRio

DynamoRio vs PIN

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: Instrumentation of
Adobe Reader with
DynamoRio

Runtime: 2 min 31 sec

Description: Use
DynamoRio to extract code-
coverage of a closed-source
application using only a
simple command.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: Determine Adobe
Reader “PDF loaded”
breakpoint with coverage
analysis.

Runtime: 1 min 08 sec

Description: Log coverage
of “PDF open” action to get a
breakpoint address to detect
end of PDF loading.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• WinAFL - AFL for Windows

• Download: https://github.com/ivanfratric/winafl

• Developed by Ivan Fratric

• Two modes:

• DynamoRio: Source code not required

• Syzygy: Source code required

• Alternative: You can easily modify WinAFL to use PIN on Windows

• Windows does not use COW (Copy-on-Write) and therefore fork-like mechanisms are not
efficient on Windows!

• On Linux AFL heavily uses a fork-server

• On Windows WinAFL heavily uses in-memory fuzzing

WinAFL

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://github.com/ivanfratric/winafl

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: Fuzzing mimikatz on
Windows with WinAFL

Runtime: 10 min 39 sec

Description: See the
WinAFL fuzzing process on
Windows of binaries with
source-code available in
action.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Fuzzing and exploiting mimikatz

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm AFL)

2. Emulation of binary (e.g. with qemu)

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful

in some situations)

4. Dynamic instrumentation of compiled application (no source code required;

tools: DynamoRio, PIN, Valgrind, Frida, …)

5. Static instrumentation via static binary rewriting (Talos fork of AFL which uses

DynInst framework – AFL-dyninst, should be fastest possibility if source code is

not available but it’s not 100% reliable and currently Linux only); WinAFL in

syzygy mode is very useful on Windows if source-code is available!

Methods to measure code-coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

1. Instrumentation during compilation (source code available; gcc or llvm AFL)

2. Emulation of binary (e.g. with qemu)

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful

in some situations)

4. Dynamic instrumentation of compiled application (no source code required;

tools: DynamoRio, PIN, Valgrind, Frida, …)

5. Static instrumentation via static binary rewriting (Talos fork of AFL which uses

DynInst framework – AFL-dyninst, should be fastest possibility if source code is

not available but it’s not 100% reliable and currently Linux only); WinAFL in

syzygy mode is very useful on Windows if source-code is available!

6. Use of hardware features

• IntelPT (Processor Tracing); available since 6th Intel-Core generation (~2015)

• WindowsIntelPT (from Talos) or kAFL

Methods to measure code-coverage

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Areas which influent fuzzer results

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Fuzzer

Results

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Fuzzer speed

Fuzzer

Results

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Fuzzer Speed

1. Fork Server

2. Deferred Fork Server

3. Persistent Mode (in-memory fuzzing)

4. Prevent process switches (between target application and the Fuzzer) by injecting the Fuzzer
code into the target process

5. Modify the input in-memory instead of on-disk

6. Use a RAM Disk

7. Remove slow API calls

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

GUI automation – Example HashCalc

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

Question 1:

What is the maximum MD5

fuzzing speed with GUI

automation?

Question 2:

How many MD5 hashes can

you calculate on a CPU per

second?

© 2017 SEC Consult | All rights reserved

• How to find the target function without source code?

1. Measure code coverage (drrun –t drcov) in two program invocations, one should
trigger the function, one not. Then substract both traces (IDA Pro lighthouse)

2. Log all calls and returns together with register and stack values to a logfile. Then
search for the correct input / output combination (IDA Pro funcap or a simple
DynamoRio / PIN tool)

3. Place memory breakpoints on the input

4. Use a taint engine (see later)

WinAFL

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: Identification of target

function address of a closed-source

application (HashCalc).

Runtime: 10 min 15 sec

Description: Using reverse

engineering (breakpoints on function

level via funcap and DynamoRio with

LightHouse) to identify the target

function address.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: In-memory fuzzing of
HashCalc using a debugger.

Runtime: 4 min 21 sec

Description: Using the identified
addresses and WinAppDbg we
can write an in-memory fuzzer to
increase the fuzzing speed to 750
exec / sec!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: In-memory fuzzing of
HashCalc using DynamoRio.

Runtime: 2 min 58 sec

Description: Using the identified
addresses and DynamoRio we
can write an in-memory fuzzer to
increase the fuzzing speed to

170 000 exec / sec!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• HashCalc.exe MD5 fuzzing

• GUI automation with AutoIt: ~2-3 exec / sec

• In-Memory with debugger: ~750 exec / sec

• In-Memory with DynamoRio (no instr.): ~170 000 - 200 000 exec / sec

GUI automation

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Input filesize

Fuzzer

Results

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Input file size

• The input file size is extremely important!

• Smaller files

• Have a higher likelihood to change the correct bit / byte during fuzzing

• Are faster processed by deterministic fuzzing

• Are faster loaded by the target application

• AFL ships with two utilities

• AFL-cmin: Reduce number of files with same functionality

• AFL-tmin: Reduce file size of an input file

• Uses a “fuzzer” approach and heuristics

• Runtime depends on file size

• Problems with file offsets

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Input file size

• Example: Fuzzing mimikatz

• Initial memory dump: 27 004 528 Byte

• Memory dump which I fuzzed: 2 234 Byte

 I’m approximately 12 000 times faster with this setup…

• You would need 12 000 CPU cores to get the same result in the same time as my

fuzzing setup with one CPU core

• Or with the same number of CPU cores you need 12 000 days (~33 years) to get the

same result as I within one day

• In reality it’s even worse, since you have to do everything again for every queue entry

(exponential)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Heat map of the memory dump (mimikatz access)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Heat map of the memory dump (mimikatz access) - Zoomed

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Fuzzing and exploiting mimikatz

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

See below link for in-depth discussion how I fuzzed mimikatz with WinAFL:

https://www.sec-consult.com/en/blog/2017/09/hack-the-hacker-fuzzing-mimikatz-on-windows-with-winafl-

heatmaps-0day/index.html

https://www.sec-consult.com/en/blog/2017/09/hack-the-hacker-fuzzing-mimikatz-on-windows-with-winafl-heatmaps-0day/index.html

© 2017 SEC Consult | All rights reserved

Creation of heatmaps

• For mimikatz I used a WinAppDbg script to extract file access information

• Very slow approach because of the Debugger

• Can’t follow all memory copies Hitcounts are not 100% correct

• Better approach: Use dynamic instrumentation / emulation

• libdft

• Triton

• Panda

• Manticore

• Own PIN / DynamoRio tool

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

How my tool for heatmap creation work

1. Inject assembler instructions in front of all relevant application instructions (memory
or register operations); Don’t use clean calls because they are slow!

2. These instructions fill a buffer with “access struct” entries with the source (address
or register id), the destination, the size and the semantic

• Move semantic: mov [0x12345678], eax

• Union semantic: add EAX, [EBX]

• Untaint semantic: mov EAX, 0x12345

• Increment hitcount semantic: cmp, test, …

3. After the (thread-specific) buffer is full, a clean call is made to process the access
data, “timestamps” are used for multi-threaded applications

4. Shadow memory (1 byte to 1 bit) is used to indicate if a byte is tainted or not

5. AVL-like (balanced) tree is used to store a mapping from tainted memory ranges to
the associated file offsets (to count hit counts for file offsets)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Combine Call-Graph with Taint-Analysis

We can write a DynamoRio/PIN tool which tracks calls and taint status

Automatically detect target fuzz function

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

func1
func1

func4func2

func6 func7 func8 func9
access

access

access

access

access

access

func5

func3

Target

Function

to fuzz

_start

© 2017 SEC Consult | All rights reserved

Fuzzing with taint analysis

1. Typically byte-modifications are uniform distributed over the input file

2. With taint analysis we can distribute it uniform over the tainted instructions!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

Input file

(5 byte)

Byte 1

Byte 2

Byte 3

Byte 4

20 Mutations

20 Mutations

20 Mutations

20 Mutations

Instruction X1: Read byte 2

Instruction X2: Read byte 1,2,3,4

Instruction X3: Read byte 2

Instruction X4: Read byte 1,2

Instruction X5: Read byte 2,3

Byte 1 read by 2 instructions

Byte 2 read by 5 instructions

Byte 3 read by 2 instructions

Byte 4 read by 1 instruction

Byte 5 read by 0 instructions

2/10 = 20%

5/10 = 50%

2/10 = 20%

1/10 = 10%

0/10 = 0%

20 Mutations

50 Mutations

20 Mutations

10 Mutations

Maybe don‘t fuzz this at all

X2 is maybe a

copy / search function

If this sets EFLAGS and can change

a cc jump, it should give an extra boost…

Byte 5
0 Mutations20 Mutations

© 2017 SEC Consult | All rights reserved

The power of dynamic instrumentation frameworks

 Automatically detect target fuzz function

 Taint engine can be used on first fuzz iteration All writes can be logged with the address to

revert the memory state for new fuzz iterations

 Enable taint engine logging only for new code coverage Automatically detect which bytes make

the new input unique and focus on fuzzing them!

 Call-instruction logging can be used to find interesting functions

• Malloc / Free functions (to automatically change to own heap implementation)

• Own heap allocator can free all chunks allocated in a fuzz iteration No mem leaks

• Better vulnerability detection (see later slides)

• Compare functions Return the comparison value to the fuzzer

• Checksum functions Automatically “remove” checksum code

• Error-handling functions

 Focus fuzzing on promising bytes

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Mutators

Fuzzer

Results

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

AFL Mutation

• AFL performs deterministic, random, and dictionary based mutations

• AFL has a very good deterministic mutation algorithms

• Deterministic mutation strategies:

• Bit flips

• single, two, or four bits in a row

• Byte flips

• single, two, or four bytes in a row

• Simple arithmetics

• single, two, or four bytes

• additions/subtractions in both endians performed

• Known integers

• overwrite values with interesting integers (-1, 256, 1024, etc.)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

AFL Mutation

• Random mutation strategies performed for an input file after

deterministic mutations are exhausted.

• Random mutation strategies:

• Stacked tweaks

• performs randomly multiple deterministic mutations

• clone/remove part of file

• Test case splicing

• splices two distinct input files at random locations and joins

them

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Radamsa is a very powerful input mutator

• If you don‘t want to write a mutator yourself, just use radamsa!

• https://github.com/aoh/radamsa

Radamsa

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://github.com/aoh/radamsa

© 2017 SEC Consult | All rights reserved

• Problem of radamsa: External program execution is slow (no library support)

• Already submitted by others as issue: https://github.com/aoh/radamsa/issues/28

• Example: Our SECCON CTF fuzzer for the chat binary

• Test 1: Before every execution we mutate the input with a call to radamsa

• Result: Execution speed is ~17 executions per second

• Test 2: Mutate input with python (no radamsa at all)

• Result: Execution speed is ~740 executions per second

• Always create multiple output files (e.g.: 100 or 1000) or use IP:Port output

Radamsa

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://github.com/aoh/radamsa/issues/28

© 2017 SEC Consult | All rights reserved

• Testcases as input:

Radamsa

test1.txt test2.txt test3.txt

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Often seen wrong use of radamsa:

Radamsa

Possible output

Only variations of

the current input file

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Correct invocation:

Radamsa

Possible output

Combination of

multiple input files!

Always generate multiple
outputs (100 or 1000; 100 is
recommended by radamsa)

However, merging of multiple input files is very
unlikely (“send msg + delete user + view msg” will
not be found within 2 hours)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Correct selection of mutators (Example of the “chat” target):

Radamsa

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Radamsa is written in Owl Lisp (a functional dialect of Scheme)

• Modifying the code is hard (at least for me because I don’t know Owl Lisp)

• Currently no library support (Slower than in-memory mutation)

• Good mutation and gramma detection (~ 3500 lines)

• Maintained

• Ni is written in C

• Simple to modify, add to own project or compile as library (and it’s fast)

• https://github.com/aoh/ni (from the same guys)

• Not as advanced as radamsa (~800 lines)

• Not maintained: Last commit 2014

Radamsa vs. Ni

Ni can also merging multiple inputs

 Other inputs are only used during “random_block()” function

 Merging / Gramma detection not so advanced as with radamsa

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://github.com/aoh/ni

© 2017 SEC Consult | All rights reserved

Speed comparision

• The following table gives a speed comparison between different test setups for

mutating data

• Numbers in the table are generated testcases per second

• Table does not contain fuzzing or file read/write times (only generation of fuzz data)

• TC stands for number of test cases

• RD stands for RAM disk for files & programs

• Test program was a Python script

• Radamsa fast mode uses the following mutators:

• -m bf,bd,bi,br,bp,bei,bed,ber,sr,sd

• Taken from FAQ from https://github.com/aoh/radamsa

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://github.com/aoh/radamsa

© 2017 SEC Consult | All rights reserved

Speed comparision – input small text files

Type of test Radamsa ext. Radamsa fast ext. Ni ext. Ni library (ctypes)

Input stdin (1 tc), output

stdout (1 tc)
~ 265 ~ 345 (no stdin support) -

Input files (3 tc), output

stdout (1 tc)
~ 255 ~300 ~775 -

Input files (3 tc), output via

files (100 tc)
~1100 ~1930 ~7300 -

Input via files (3 tc), output

via files (1000 tc)
~1100 ~2150 ~8350 -

Input files (3 tc), output via

files (100 tc); RD
~1220 ~2740 ~7300 -

Input files (3 tc), output via

files (1000 tc); RD
~1230 ~3100 ~8400 -

Input 3 samples, output

one (all in-memory)
- - - ~4000

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

The following input triggers the second Use-After-Free flaw in the chat binary:

The problem of the search space

send_private_message

user2

content

delete_user

login

user2

view_messages

register

user1

register

user2

login

user1

Depth 1

Depth 6

Depth 10

Depth 13

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

The problem of the search space

empty

user1 user2 login send…

register user2 login send…

register

register user1 user2 login send…

user1

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

register

register

user1

register

user1

register

<empty>

© 2017 SEC Consult | All rights reserved

• We need at least 7 distinct inputs to find the flaw (register, user1, user2, login,
send_private_message, delete_user, view_message)

• During real fuzzing we have way more inputs (all possible commands, special
chars, long strings, special numbers, ….)

• After every input line we can again select one from the 7 possible inputs

• We have to find 13 inputs in the correct order to trigger the bug!

• For 13 inputs we have 7^13 = 96 889 010 407 possibilities

Runtime of the Fuzzer to find this flaw?

This is also a huge difference to file format fuzzing! File format fuzzing does not
produce such huge search spaces, because “commands” can’t be sent at every
node in the tree! (Nodes have less children)

 AFL is not the best choice to fuzz such problems

The problem of the search space

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

 We must reduce the search space!

• Initial Start-Sequence (Create Users) (This can be seen as our “input corpus”)

• Initial End-Sequence (Check public and private messages of all users)

• Encode the format into the fuzzer
• Example: send_message(username, random_string_msg))

• Peach Fuzzer

• But that was basically what we wanted to avoid (Fuzzer should work without modification)

• Instead of adding one command per iteration, add many commands (inputs)
• Same when fuzzing web browsers Add thousands of html, svg, JavaScript, CSS, …

lines to one test case and check for a crash

• Important: Too many commands can create invalid inputs (e.g. invalid command Exit
application)

• Additional feedback to “choose” promising entries (E.g.: prefer text output which was not
seen yet, prefer fuzzer queue entries which often produce new output, …)

The problem of the search space

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

The following input triggers the second Use-After-Free flaw in the chat binary:

The problem of the search space

send_private_message

user2

content

delete_user

login

user2

view_messages

register

user1

register

user2

login

user1

Depth 4

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: Fuzzing SECCON CTF

binary (text feedback)

Runtime: 3 min 21 sec

Description: See how we can

enhance the Fuzzer to find the

3rd (deep) use-after-free bug!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Chat CTF Fuzzer

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

• Runtime to find the deep second UAF (Use-After-Free) vulnerabiltiy…

• UAF1 was removed from patched binary because UAF1 would trigger before UAF2

• This fuzzer also works for any other CTF binary!!

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Detection rate

Fuzzer

Results

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

 Did you notice, that we triggered 3 (!) not crashing vulnerabilities during the „chat“

introduction demo?

And we didn‘t really see one of the bugs!

Our Fuzzer would also not see the bugs…

Other real world example: Heartbleed is a read buffer overflow and does not lead

to a crash…

 We (the Fuzzer) need a way to detect such flaws / vulnerabilities!

Detecting not crashing vulnerabilities

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Page (4096 byte), read- & write-able

Heap Overflow Detection

Heap Data 1
Meta

Data
Heap Data 2

Meta

Data

Heap Overflow

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Page (4096 byte), read- & write-able

Heap Overflow Detection

Heap Data 1
Meta

Data

Heap Overflow

Page (4096 byte)

NOT read- & write-able

Page (4096 byte), read- & write-able

Heap Data 2
Meta

Data

Page (4096 byte)

NOT read- & write-able

Unused (special pattern)

Unused (special pattern)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Page (4096 byte), read- & write-able

Use-After-Free Detection

Heap Data 1
Meta

Data

FREE

Page (4096 byte)

NOT read- & write-able

Unused (special pattern)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Page (4096 byte)

NOT read- & write-able

Use-After-Free Detection

Access attempt

Page (4096 byte)

NOT read- & write-able

Heap Data 1
Meta

Data

Access attempt

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Libdislocator (shipped with AFL) implements exactly this

• We can also set AFL_HARDEN=1 before make (Fortify Source & Stack Cookies)

Heap Library

One extra page

which is not RW

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Libdislocator catches heap overflow

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Libdislocator catches Use-After-Free

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Demo Time!

Topic: Mimikatz vs.
GFlags & Application
Verifier with PageHeap on
Windows

Runtime: 3 min 15 sec

Description: See how to
find bugs by just using the
application and enabling
the correct verifier settings.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• LLVM has many useful sanitizers!

• Address-Sanitizer (ASAN)

• -fsanitize=address

• Out-of-bounds access (Heap, stack, globals), Use-After-Free, …

• Memory-Sanitizer (MSAN)

• -fsanitize=memory

• Uninitialized memory use

• UndefinedBehaviorSanitizer (UBSAN)

• -fsanitize=undefined

• Catch undefined behavior (Misaligned pointer, signed integer overflow, …)

• DrMemory (based on DynamoRio) if source code is not available

 Use sanitizers during development !!!

Detecting not crashing vulnerabilities

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• During corpus generation don’t use sanitizers performance

• After we have a good corpus, start fuzzing it with sanitizers / injected libraries

• I prefer heap libraries because they are faster and run after the first fuzzing

session the corpus against binaries with sanitizers for some days

• I don’t use heap libraries for the master fuzzer (deterministic fuzzing must be fast)

• AFL performance example; one core; no in-memory fuzzing:

• x64 binary: 1400 exec / sec

• x86 binary: 1200 exec / sec

• x86 hardened binary: 1150 exec / sec

• x86 hardened binary + libdislocator: 600 exec / sec

• x86 binary with Address Sanitizer: 200 exec / sec

Detecting not crashing vulnerabilities

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

• Change the heap implementation to check for dangling pointers AFTER a

free() operation! (similar to MemGC)

• Check all pointers in data section, heap and stack if they point into memory

• Check must only be performed one time for new queue entries

Detecting not crashing vulnerabilities

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

send_private_message

user2

content

delete_user

login

user2

view_messages

Free()

Detection here!

Use after free

© 2017 SEC Consult | All rights reserved

Overview: Areas which influence fuzzing results

Input filesize

MutatorsDetection rate

Fuzzer speed

Fork-server

Faster instrumentation code

Static vs. Dynamic

Instrumentation

In-memory fuzzing

No process switches

…

Page heap / Heap libs

Sanitizers (ASAN, MSAN,

SyzyASan, DrMemory, ..)

Dangling Pointer Check

Writeable Format Strings Check

…

AFL-tmin & AFL-cmin

Heat maps via

Taint Analysis and

Shadow Memory

…

Application aware mutators

Generated dictionaries

Append vs. Modify mode

Grammar-based mutators

Use of feedback from application

…

Fuzzer

Results

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Some public fuzzing numbers

© 2017 SEC Consult | All rights reserved

• Example: Talk by Charlie Miller from 2010 „Babysitting an Army of Monkeys“

• Fuzzed Adobe Reader, PPT, OpenOffice, Preview

• Strategy: Dumb fuzzing

• Download many input files (PDF 80 000 files)

• Minimal corpus of input files with valgrind (PDF 1515 files)

• Measure CPU to know when file parsing ended

• Only change bytes (no adding / removing)

• Simple fuzzer in 5 LoC

Some public fuzzing numbers

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Some public fuzzing numbers

Fuzzer:

Source: Charlie Miller „Babysitting an Army of Monkeys“

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Some public fuzzing numbers

Source: Charlie Miller „Babysitting an Army of Monkeys“

Results:
• 3 months fuzzing

• 7 Million Iterations

Crashes with unique EIP:

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Other numbers from Jaanus Kääp:

• https://nordictestingdays.eu/files/files/jaanus_kaap_fuzzing.pdf

• Code coverage for minset calculation (no edge coverage because of speed)

• PDF initial set 400 000 files Corpus 1217 files

• DOC initial set 400 000 files Corpus 1319 files

• DOCX initial set 400 000 files Corpus 2222 files

Some public fuzzing numbers

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://nordictestingdays.eu/files/files/jaanus_kaap_fuzzing.pdf

© 2017 SEC Consult | All rights reserved

Google fuzzed Adobe Flash in 2011:

„What does corpus distillation look like at Google scale? Turns out we have a

large index of the web, so we cranked through 20 terabytes of SWF file

downloads followed by 1 week of run time on 2,000 CPU cores to calculate the

minimal set of about 20,000 files. Finally, those same 2,000 cores plus 3 more

weeks of runtime were put to good work mutating the files in the minimal set

(bitflipping, etc.) and generating crash cases. “

The initial run of the ongoing effort resulted in about 400 unique crash signatures,

which were logged as 106 individual security bugs following Adobe's initial triage.

• Source: https://security.googleblog.com/2011/08/fuzzing-at-scale.html

Some public fuzzing numbers

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://security.googleblog.com/2011/08/fuzzing-at-scale.html

© 2017 SEC Consult | All rights reserved

Google fuzzed the DOM of major browsers in 2017:

https://googleprojectzero.blogspot.co.at/2017/09/the-great-dom-fuzz-off-of-2017.html

Some public fuzzing numbers

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://googleprojectzero.blogspot.co.at/2017/09/the-great-dom-fuzz-off-of-2017.html

©
 f
o

to
li
a

6
2

9
0

4
9

8
0

Rules for fuzzing

© 2017 SEC Consult | All rights reserved

1. Start fuzzing!

2. Start with simple fuzzing, during fuzzing add more logic to the next fuzzer version

3. Use Code/Edge Coverage Feedback

4. Create a good input corpus (via download or feedback)

5. Minimize the number of sample files and the file size

6. Use sanitizers / heap libraries during fuzzing (not for corpus generation)

7. Modify the mutation engine to fit your input data

8. Skip the “initialization code” during fuzzing (fork-server, persistent mode, …)

9. Use wordlists to get a better code coverage

10. Instrument only the code which should be tested

11. Don’t fix checksums inside your Fuzzer, remove them from the target application (faster)

12. Start fuzzing!

Fuzzing rules

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

A last hint…

Fuzzing can show the presence bugs
but can’t prove the absence of bugs!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Thank you for your attention!

Source: Twitter

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

For any further questions contact

your SEC Consult Expert.

René Freingruber
@ReneFreingruber

r.freingruber@sec-consult.com

+43 676 840 301 749

SEC Consult Unternehmensberatung GmbH

Mooslackengasse 17

1190 Vienna, AUSTRIA

www.sec-consult.com

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

https://twitter.com/renefreingruber?lang=de
mailto:r.freingruber@sec-consult.com
http://www.sec-consult.com/

© 2017 SEC Consult | All rights reserved

SEC Consult in your Region.

RUSSIA

CJCS Security Monitor

5th Donskoy proyezd, 15, Bldg. 6

119334, Moscow

Tel +7 495 662 1414

Email info@securitymonitor.ru

THAILAND

SEC Consult (Thailand) Co.,Ltd.

29/1 Piyaplace Langsuan Building 16th Floor, 16B

Soi Langsuan, Ploen Chit Road

Lumpini, Patumwan | Bangkok 10330

Email office-vilnius@sec-consult.com

LITHUANIA

UAB Critical Security, a SEC Consult company

Sauletekio al. 15-311

10224 Vilnius

Tel +370 5 2195535

Email office-vilnius@sec-consult.com

SINGAPORE

SEC Consult Singapore PTE. LTD

4 Battery Road

#25-01 Bank of China Building

Singapore (049908)

Email office-singapore@sec-consult.com

CANADA

i-SEC Consult Inc.

100 René-Lévesque West, Suite 2500

Montréal (Quebec) H3B 5C9

Email office-montreal@sec-consult.com

AUSTRIA (HQ)

SEC Consult Unternehmensberatung GmbH

Mooslackengasse 17

1190 Vienna

Tel +43 1 890 30 43 0

Fax +43 1 890 30 43 15

Email office@sec-consult.com

GERMANY

SEC Consult Deutschland

Unternehmensberatung GmbH

Ullsteinstraße 118, Turm B/8 Stock

12109 Berlin

Tel +49 30 30807283

Email office-berlin@sec-consult.com

SWITZERLAND

SEC Consult (Schweiz) AG

Turbinenstrasse 28

8005 Zürich

Tel +41 44 271 777 0

Fax +43 1 890 30 43 15

Email office-zurich@sec-consult.com

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

