I o 6
SEC Consult

Introduction

* René Freingruber (r.freingruber@sec-consult.com)
« Twitter: @ReneFreingruber
« Security Consultant at SEC Consult
» Reverse Engineering, Exploit development, Fuzzing
e Trainer at SEC Consult
» Secure Coding in C/C++, Reverse Engineering
» Red Teaming, Windows Security
« Speaker at conferences:

« CanSecWest, DeepSec, 31C3, Hacktivity, BSides Vienna, Ruxcon, ToorCon,
NorthSec, IT-SeCX, QuBit, DSS ITSEC, ZeroNights, Owasp Chapter, ...

« Topics: EMET, Application Whitelisting, Hacking Kerio Firewalls, Fuzzing Mimikatz, ...

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

mailto:r.freingruber@sec-consult.com

A
SEC @Il ADVISOR FOR YOUR INFORMATION SECURIT

-~ Vilnius | LT
Berlin| DE
Montreal | cA \ \ .~ _— Moscow | RU

. "8
Zurich | cH =% A5

. .,

We are hlrlng' Vlenna(HQ)N\"\ -

Wlener Neustadt | AT .

Founded 2002 = \
Leading in IT-Security Services and Singapore | SG
Consulting

Bangkok | TH

Strong customer base in Europe and Asia

70+ Security experts
® SEC Consult Offices

400+ Security audits per year SEC Consult Clients

A
1@?
>

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Fuzzing

Definition of fuzzing (source Wikipedia):

Fuzzing or fuzz testing 1s an automated software testing
technique that involves providing invalid, unexpected, or
random data as inputs to a computer program. The program is
then monitored for exceptions such as crashes, or failing
bullt-in code assertions or for finding potential memory
leaks.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Why do we need Fuzzing?

Microsoft Security Development Lifecycle (SDL) Process

2. REQUIREMENTS

1. Core Security 2. Establish Security 5. Establish Design
Training Requirements Requirements
3. Create Quality 6. Perform Attack
Gates/Bug Bars Surface Analysis/
Reduction

4. Perform Security 7. Use Threat

and Privacy Risk Modeling
Assessments

Source: https://www.microsoft.com/en-us/SDL/process/verification.aspx

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

3. DESIGN

> 1. IMPLEMENTATION > 5. VERIFICATION 6. RELEASE

8. Use Ag 11. Perform Dynamic 14. Create an Incident Execute Inciden
Tools Analysis Response Plan Response Plan

0. DeprecateWnsafe RPREl{el 1 NTrs4 15. Conduct Final
Functions Testing Security Review

10. Perform Stati 13. Conduct Attack 16. Certify Release
Analysis Surface Review and Archive

| also recommend fuzzing during implementation

Example: You finished a complex task and you are not sure if
it behaves correctly and is secure

=>» Start a fuzzer over night / the weekend = Check corpus

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

https://www.microsoft.com/en-us/SDL/process/verification.aspx

Why do we need Fuzzing?

SDL Phase 4 Security Requirements

Where input to file parsing code could have crossed a trust boundary, file fuzzing
must be performed on that code. [...]

« An Optimized set of templates must be used. Template optimization is based on
the maximum amount of code coverage of the parser with the minimum number of
templates. Optimized templates have been shown to double fuzzing effectiveness
In studies. A minimum of 500,000 iterations, and have fuzzed at least 250,000
iterations since the last bug found/fixed that meets the SDL Bug Bar.

Source: https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.aspx

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.aspx

 Advantages:

* Very fast (in most cases much faster than manual source code review)

* You don’t have to pay a human, only the power consumption of a computer
* Itruns 24 hours/ 7 days, a human works only 8 hours / 5 days

« Scalable (want to find more bugs? = Start 100 fuzzing machines instead of 1)

« Disadvantages:

« Deep bugs (lots of pre-conditions) are hard to find
« Typically you can’t find business logic bugs

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

— g

Successful Fuzzing Examples

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Topic: Real-world EnCase
Imager Fuzzing (Vulnerability
found by SEC Consult
employee Wolfgang Ettlinger)

Runtime: 29 sec

Description: See real-world
fuzzing in action.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Exploitability of the vulnerability

Jrr—
LvCove Ieager (Nct Respondegl

XULEE

e T
i Coce(aCatevaged » &) View = 5 Took = 4) Ealirge » . Add Dedenia v W
X3 Home | 5 Evdence %/
O O T Viwwng flanry) v L Sph Mede v 7 Lhcqawe v g Dawice = =
a 04)% Dévme: :"-;-l.._gl L0 SIS
o) Do rage - : — Fod :
T . !’__:“ = #lv iseeneian _I won [41 Hes Sl Sioe : e Yl
Perame. " [orenn | g b Mretecied Frote tin
Ayl / el
y :!Q'Jr;oyﬂtscvnr«vu l - -
Coligen —) | - . — e | |
4 bLagert i
+ Colapes A0 M“ oM me me :’M MmN e mn
0N ON N N0 WO NN N 0N
St lniinded Fovien Phan » 1 LS 2
ehade Wb folden S Num - " Mo | g A " e e N >
ochade Snge Faide Codfumn - % Do
- |) I3 — 4 4 < a 4
Sghect Rem Space on
LN fel | Aab C 7 8 5 / -~
1 bequse =
SQwod | Oy |lxx | D |4 S |6 o P [
i Devwe T Bweee
. e Mo [jan E 1 / i '7 —
Oyt it 2wl F Q . .
. (2] 3
1) Tookts |] meport Jlak J
- °~
Wwe Vabur -
B Nise O s e Canden <
Ty
5 Nkia

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

Autolt

« Autolt definition (https://www.autoitscript.com):

Autolt v3 1s a freeware BASIC-like scripting
language designed for automating the Windows GUI and
general scripting. It uses a combination of
simulated keystrokes, mouse movement and
window/control manipulation in order to automate
tasks

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

https://www.autoitscript.com/

Autolt Demo Source Code

O J o U W

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

#include <AutolItConstants.au3>

Run ("notepad.exe")

Local $hWand = WinWait (" [CLASS:Notepad]", "", 10)
ControlSend (ShWand, "", "Editl", "Hello World")
WinClose ($ShWand)

ControlClick (" [CLASS:#32770]"™, "", "Button3")
WinSetState (" [CLASS:Notepad]", "", @SW MAXIMIZE)
MouseMove (14, 31)

MouseClick ($SMOUSE CLICK LEFT)

MouseMove (85, 209)

MouseClick (SMOUSE CLICK LEFT)
ControlClick (" [CLASS:#327701"™, "", "Button2")

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Autolt

 Another use case: Popup Killer
« During fuzzing applications often spawn error message; popup killer closes them

« Another implementation can be found in CERT Basic Fuzzing Framework (BFF)
Windows Setup files (C++ code to monitor for message box events)

1 #include <MsgBoxConstants.au3>
2 BWhile 1
3 Local $alist = WinList ()
4 o ; SaList[0] [0] number elements
5 + SalList[x][0] => title ; SaList[x][1] => handle
B @ For $1 =1 To $alList[0][0]
7 E If StringCompare ($aList[$1][0], "Engine Error") == 0 Then
8 ControlClick($aList[$1]([1], "™, "Button2", "left", 2)
9 + EndIf
10 - Next
11 sleep (500) ,; 500 ms
12 WEnd

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Topic: CS GO minimize crash
Runtime: 2 min 16 sec

Description: See real-world
example in action.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

« Such straight-forward fuzzing is very often very successful!

« Example success stories:
 Encase http://blog.sec-consult.com/2017/05/chainsaw-of-custody-manipulating.html
* Counterstrike https://hernan.de/blog/2017/07/07/lock-and-load-exploiting-counter-
strike-via-bsp-map-files/
« Many others!

 But can we do better?

* What problems do you see in such fuzzing approaches?
« GUI automation is very slow
« Documentation and Specs must be read to write the fuzzer =» Time consuming task!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

http://blog.sec-consult.com/2017/05/chainsaw-of-custody-manipulating.html
https://hernan.de/blog/2017/07/07/lock-and-load-exploiting-counter-strike-via-bsp-map-files/

Feedback based fuzzing

 Problem: We need to read the specification / documentation to write
the fuzzer

« Solution: Use feedback from the application

« What do you think is useful feedback?

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

Consider this pseudocode:

PEIREE ("Please enter some command\n");
if{read_line_from_user () == "command") {
printf ("You entered command!\n") ;
if{read_line_from_user{) == "subcommand") {
printf ("You entered subcommand!\n") ;
if(read line from user() == "trigger") {

PEIREE ("You entered trigger!\n");
//buffer overflow here

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

Consider this pseudocode:

PEIREE ("Please enter some command\n");
if{read_line_from_user () == "command") {
printf ("You entered command!\n");
if{read_line_from_user{) == "subcommand") {
printf ("You entered subcommand!\n") ;
if(read line from user() == "trigger") {
PEINtE ("You entered trigger!\n");
//buffer overflow here

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Fuzzing Queue:
{<empty>}

Random fuzzer action:

Queue is empty, so create a
random input

Full input:
foobar

Full output:
Please enter some command

=> New output, store the
associated input in fuzzing queue

(A)
P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

Consider this pseudocode:

PEIREE ("Please enter some command\n");
if{read_line_from_user () == "command") {
printf ("You entered command!\n");
if{read_line_from_user{) == "subcommand") {
printf ("You entered subcommand!\n") ;
if(read line from user() == "trigger") {
PEINtE ("You entered trigger!\n");
//buffer overflow here

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Fuzzing Queue:

A}

Random fuzzer action:
Take A and modify it (uppercase)

Full input:
FOOBAR

Full output:
Please enter some command

=> Output already known, so don't
add input to Queue

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

Consider this pseudocode: F:}ZZ'”Q Queue:
PEIREE ("Please enter some command\n");
if(read line from user () == "command") { Random fuzzer action:
BESEE ("You entered command!\n"); Take A and modify it (replace it)
if(read line from user() == "subcommand") {
printf{"Ygu entered subcommand!Fn"); FuHinput
if(read line from user() == "trigger") { SRITTTTEITE

PEINtE ("You entered trigger!\n");

//buffer overflow here
} . Full output:

} Please enter some command
} You entered command!

=> New output, so add input to
gueue (as B)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

Consider this pseudocode: Fuzzing Queue:
{A.B}
PEINEE ("Please enter some command\n") ;
if(read line from user () == "command") { Random fuzzer action:
PESEE ("You entered command!\n"); Take B and append random value
if{read_line_from_user{) == "subcommand") {
printf ("You entered subcommand!\n") ; FuHinpur
if(read line from user() == "trigger") { Con"nand

PEINtE ("You entered trigger!\n");
//buffer overflow here

123
} Full output:
} Please enter some command
You entered command!
=>» Output already known, do

nothing
24 SEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

Consider this pseudocode: Fuzzing Queue:
{A,B}
PEIREE ("Please enter some command\n");
if(read line from user () == "command") { Random fuzzer action:
PEIREE ("You entered command!\n") ; Take A and append random value
if{read_line_from_user{) == "subcommand") {
printf ("You entered subcommand!\n") ; FuHinpur
if(read line from user() == "trigger") { foobar '

PEINtE ("You entered trigger!\n");
//buffer overflow here

123

} Full output:
} Please enter some command

=>» Output already known, do
nothing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

Consider this pseudocode:

PEIREE ("Please enter some command\n");
if (read line from user () == "command") {
RS (" You entered command!\n") ;
1f(read line from _user() == "subcommand") {
| PEEREE (" You entered Subconmand'\n") ;
if{read_llne_from_user{) == "trigger") {
PEINtE ("You entered trigger!\n");
//buffer overflow here

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Fuzzing Queue:
{AB}

Random fuzzer action:
Take B and append random value

Full input:
command
subcommand

Full output:

Please enter some command
You entered command!

You entered subcommand!

=> New output, store input as C

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

Consider this pseudocode:

PEIREE ("Please enter some command\n");
if (read line from user () == "command") {
-("You entered command!\n") ;

if(read line from _user()

== "subcommand") {

-("You entered Subc:ommand'\n") ;
1f(read line from _user() == "trigger") {

-("YDu entered trigger!\n");
//buffer overflow here

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Fuzzing Queue:
{A,B,C}

Random fuzzer action:
Take C and append random value

Full input:
Command
subcommand
trigger

Full output:

Please enter some command
You entered command!

You entered subcommand!
You entered trigger!

=2 Crash

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

« | was often successful with feedback based on text-output

« Example:
« SECCON 2016 CTF — Chat binary ; nearly all CTF binaries
« Embedded hardware admin console (text-based applications)

« Very simple & fast to implement
« Normal application runtime during fuzzing (no performance lose)

* Not always applicable (application does not give output messages)
 |f two different behaviors do not result in different output it's useless

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

Hints for output based fuzzing:

1. Remove default output “unknown command”
« Prevents filling the fuzzing queue with useless commands

2. Removing user-reflected output can sometimes help

« Example: “login MyUser1” => Output: “Hello MyUser1”

=>» Two different users will have “Hello MyUser1” and “Hello MyUser2” = Two
entries in the fuzzing queue (depends on situation if we want this or not)

=» Solution: Hook fprintf (and others) to just print the format string ("Hello %s\n”)

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

Hooking fprintf:

#define GNU SOURCE
#include <stdio.h>
#include <dlfcn.h>
#include <stdarg.h>
// gcc -shared -D FORTIFY SOURCE=2 -g -WLl,--no-as-needed -1dl -fPIC -Wall output.c -o output.so
static FILE *log = NULL;
int fprintf(FILE *stream, const char *format, ...) {
static int (*original fprintf) (FILE *s,const char *f,...) = NULL;
if(original fprintf == NULL) {
original fprintf = (int (*)(FILE *s,const char *f,...))dlsym(RTLD NEXT, "fprintf");
log = fopen("/tmp/original output.log", "w+");
}
// trigger original behavior (with possible flaws)
va list args; va start(args, format); vfprintf(log, format, args); va end(args);
return original fprintf(stream, "%s", format); // Print only format string
}
__attribute ((destructor)) void end(void) {
if(log '= NULL) { fclose(log); log =
t

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Without

user@user-VirtualBox:~/tests

Simple Chat Service

1 : Sign Up 2 : Sign In

0 : Exit
menu > 1
name > USER
Success!

1 : Sign Up
0 : Exit
menu > 2
name > USER
Hello, USER!
Success!

Service Menu

./chat

user@user-VirtualBox:~/tests EDPRECOAD=S{pwd)/output.so ./chat

Simple Chat Service

1 : Sign Up 2 : Sign In
0 : Exit

menu > 1

name > USER

Success!

1 : Sign Up
0 : Exit
menu > 2
name > USER
Hello, %s!
Success!

Service Menu

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

SEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Feedback based fuzzing

« LD _PRELOAD and similar techniques can be used to redirect network traffic
to files for fuzzing
« Many fuzzers only support input via files or stdin (and not network packets)
« Check: https://github.com/zardus/preeny

Butit's error prone
« Maybe a better alternative: hitps://github.com/|dbirdwell/afl

« We can also change the heap implementation and other interesting
functions.... But more to this later

 On Windows use Detours or Dynamic Instrumentation Frameworks (see later)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

https://github.com/zardus/preeny
https://github.com/jdbirdwell/afl

Topic: Find the flaw(s) In
SECCON CTF binary

Runtime: 1 min 16 sec

Description: Try to find
the flaw(s) which are
triggered during
execution.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

=» Now consider this pseudocode

if(read_line_from_user () == "command”™) {
if{read_line_from_user() == "subcommand™) {
if(read line from user() == "trigger") ({

//buffer_pverflow here

}

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

= Input ,,command\n“results in the orange code-coverage output

if(read_line_from_user () == "command") ({
if{read_line_from_user() == "subcommand™) {
if(read line from user() == "trigger") ({

//buffer_pverflow here

}

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

=» Same for ,,command\nsubcommand\n*

if(read_line_from_user () == "command") ({
if(read_line_from_user() == "subcommand") {
if(read line from user() == "trigger") ({

//buffer_pverflow here

}

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Feedback based fuzzing

= And so on...

if(read line from user () == "command") {
1f(read line from _user () == "subcommand") {
' 1f(read line from _user() == "trigger"™) {

//buffer overflow here

}

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Methods to measure code-coverage

1. Instrumentation during compilation (source code available; gcc or llvm = AFL)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

e One of the most famous file-format fuzzers
» Developed by Michal Zalewski

* Instruments application during compile time (GCC or LLVM)
« Binary-only targets can be emulated / instrumented with gemu
* Forks exist for PIN, DynamoRio, DynlInst, syzygy, IntelPT, ...
« Simple to use!
« Good designed! (very fast & good heuristics)

e Strategy:
1. Start with a small min-set of input sample files
2. Mutate “random” input file from queue like a dumb fuzzer
3. If mutated file reaches new path(s), add it to queue

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

 Consider this code (x = argc):

if(x = 3) { user-VirtualBox# gcc -o test test.c
pUtS{'TEStlHW'}‘ user-VirtualBox# ./test 1
1 else {

Test?

puts("Test2\n"); Test3
} . T user-VirtualBox#
puts("Test3\n"); Testl

return ©;
Test3

4
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public m
L

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

[rbptuar_#4],

 Basic Blocks: _
short loc_H40055B

edi, offset s : "Test1l\n"
_puts loc_HOOSSB: : "Test2\n”

short loc_400565 mouy edi, offset aTest2
call _puts

loc_400565: ; Test3\n”

mov edi, offset aTest3
call _puts loc_400576:

oy eax, mouv eax,
jmp short locret_40057B

retn
main endp

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved
ADVISOR FOR YOUR INFORMATION SECURITY

« Just use afl-gcc instead of gcc...

user-VirtualBox# afl-gcc -o
2.35b by <lcamtuf@google.com=>

2.35b by <lcamtuf@google.com>
(64-bit, non-hardened mode, ratio 100%).

[+] Instrumented 6 locations
user-VirtualBox# ./test2 1
Test?2

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

« Result:

=

loc_400TED

argu = rsi

dword ptr [rax

Store old rsp, [rsp-98h]

) [r spt +uar_AB0], rdx X = rdi
register values [rsp+ +uar_98], rcx nop dword ptr [rax
[rsp+ +par_90], rax lea rsp, [rsp-]
. FCx maow [Fﬂp+ +uar_ A0, rdx
Instrumentation __afl_maybe_log . [Fep+0ABh+var_98], rex
~ax, [rspt +yar_90] mou [rsp+ +uar_90], rax
Restore Old rox . [r- -..r;.+ +I_I,_=”"_'E|E;] mow Fey

call __afl_maybe_log

mou ~ax, [rsp+ +yar_90]

mou rex, [rspt +uar_98]

mou rdx, [rsp+ +yar_A0]

lea rsp, [rspt]

mou edi, offset aTestl ; "Testi\n”
call _puts

jmp loc_HB80TIE

register values rdx, [rsp+ +yar_Ae]
= |:':|) [rF -'-.r:: +

edi, offset s ; "Test2\n"
_puts

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

* |Instrumentation tracks edge coverage, injected code at every basic block:

cur location = <compille time random value>;
bitmap|[(cur location © prev location) % BITMAP SIZE]++;
prev location = cur location >> 1;

=>» AFL can distinguish between
- A->B->C->D->E (tuples: AB, BC, CD, DE)
« A->B->D->C->E (tuples: AB, BD, DC, CE)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

* |Instrumentation tracks edge coverage, injected code at every basic block:

cur location = <compille time random value>;
bitmap|[(cur location © prev location) % BITMAP SIZE]++;
prev location = cur location >> 1;

=>» AFL can distinguish between
- A->B->C->D->E (tuples: AB, BC, CD, DE)
« A->B->D->C->E (tuples: AB, BD, DC, CE)

=> Without shifting A->B and B->A are indistinguishable

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

AFL-FUZZ, GZIP BINARY £ T

- %A

2,000 EXECS/SEC, I CORE, § HOURS .

-

SNS— = Without instrumentation just the

LEVEL I TEST CASES LAy

LOCOVERARLE VIA BLIND IU22ING -

= first level will be discovered (or it

- 420

Jdaw
- 2N n
o W
o
would take an extremely long time
o4 a0
- AW an
e
o
00T
o o
R
- Man
of v 0 <
N CRLULE)
%
- 4 an
weo-n
« Wan
N
- Wan
LR
o
an
o mam
p
- W
i
. o wie . W@ - « mo
o L)
Fas e o LEVEL 6 TEST CASES
M
— “ Wi « Wi | .
NN
- W4 - 5 -
o anam 4 wa - - e
— = ARan - AN - - s
o s . aq
- e - N — - MM
20850) "
- 1. - -
e
o LEVEL 2 TEST CASES

DERIVED BY MECENG THE PUZIER
- NG WITH TEAY CAVES [SOLATED 0%
FLIVOUS LEVEL

4 anam - w1

o A - g L Source:
18 “HEL httpi//icamtuf.coredump.cx/afi_

{aa gzip.png

gif

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Corpus Distillation

« We can either start fuzzing with an empty input folder or with downloaded /
generated input files

 Empty file:
* Let AFL identify the complete format (unknown target binaries)
e Can be very slow

 Downloaded sample files:
* Much faster because AFL doesn‘t have to find the file format structure itself
« Bing API to crawl the web (Hint: Don‘t use DNS of your provider ...)
« Other good sources: Unit-tests, bug report pages, ...
* Problem: Many sample files execute the same code =» Corpus Distillation

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

American Fuzzy Lop - AFL

Steps for fuzzing with AFL:

1. Remove input files with same functinality:
Hint: Call it after tmin again (cmin is a heuristic)
./afl-cmin -1 testcase dir -o testcase out dir
-- /path/to/tested/program [...program's cmdline...]

2. Reduce file size of input files:
./afl-tmin —-i testcase file -o testcase out file
—- /path/to/tested/program [...program's cmdline...]

3. Start fuzzing:
./afl-fuzz -i testcase dir -o findings dir
-- /path/to/tested/program [...program's cmdline...] @@

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

american fuzzy lop 2.49b (readelf)

42 days, 19 hrs, 27 min, 41 sec
0 days, 1 hrs, 45 min, 10 sec

5 days, 19 hrs, 58 min, 31 sec
1 days, 16 hrs, 58 min, 37 sec

0.39% / 18.87%
4.30 bits/tuple
depth

i

bitflip 1/1 ' 2220

880/106k (0.83%) 3431 (23.

4.54G 1286 (25 unique)
ﬁ338fsec 25.5k (224 unique)
path geometry

1418/474M, 557/474M
57/13.2M, 57/13.6M
19/548M, 182/375M
T.EN, 359/22eM, 374/425M
U;Q, 1061 /659M
_;Jp 0/0
.13M, 78.13%

y
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public SEc Consult
© 2017 SEC Consult | All rights reserved 4

ADVISOR FOR YOUR INFORMATION SECURITY

uHL;mumfn
Oy M Oy OOy 0D D

I:'IJ lad

I T T '--.
S |I‘“\ oo

[~ =«

Topic: Fuzzing FFMPEG
with AFL

Runtime: 7 min 33 sec

Description: See the AFL
workflow (afl-cmin, afl-
tmin, afl-fuzz) in action

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

american fuzzy lop 2.1%b (ffmpeg)

® days, 18 hrs, 52 min, 48 sec
® days, ® hrs, @ min, 25 sec

® days, 1 hrs, 15 min, 58 sec
® days, ® hrs, 12 min, 5 sec

205 (17.39%) 5205 (7.94%)
14 (1.19%) 2.39 bits/tuple

havoc 239 (20.27%)
34.6k/160k (21.64%) 376 (31.89%)
19.8M

373.4/sec 19.6k (73 unique)

91/5.51M, 30/5.51M, 21/5.51M 4
1/689k, 3/7463, 7/8669

50/383k, 10/27.5k, 6/11.5k

7/35.8k, 217203k, 34/196k

e/0, 0/0, 5/48.2k

893/1.55M, 0/0

26.75%/43.3k, 98.99%

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

SEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

« AFL input with invalid 4xm file (strk chunk changed to str))

POOEO0eEEEAAvErkD...000000000000000000000000
000000. .00. .00000000000000000000000000000000
0000000000000000000000000CA22A20000000000000

GEEILEEEEEEEEEEEEEL R d e ¢
000000000000000000...."0..0...LISTOOOOMOVILI

* AFL still finds the vulnerability!
 Level 1 identifies correct “strk” chunk

* Level 2 based on level 1 output AFL finds the vulnerability (triggered by Oxfffffftf)

30 30 30 30
30 30 30 30
30 30 73 74
00 60 20 00

30 30 30
30 30 30
6B 28 00
00 4C 49

30 30 30
30 30 3f
00 00 FF
53 54 30

30 30 30
iA_30 30
FF 00 00O
30 4D 4F

30 30 30
30 30 30
00 30 30
49 4C 49

000000. .00..00000000000000000000000000000000
00
POAGHNOEROANAO00000NA00000 Istrk(

000000000000000000...."0..0...LISTOOOOMOVILI

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

 LibFuzzer — Similar concept to AFL but in-memory fuzzing
 Requires LLVM SanitizerCoverage + writing small fuzzer-functions
e LibFuzzer is more the Fuzzer for developers
« AFL fuzzes the execution path of a binary (no modification required)

« LibFuzzer fuzzes the execution path of a specific function (minimal
code modifications required)
* Fuzz functionl which processes data format 1 =» Corpus 1
* Fuzz function2 which processes data format 2 =» Corpus 2
 AFL can be also do in-memory fuzzing (persistent mode)

* Highly recommended tutorial: http://tutorial.libfuzzer.info

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

http://tutorial.libfuzzer.info/

LibFuzzer

extern "C" int LLVMFuzzerTestOneInput(const uint8 t *Data, size t Size) {
static SSL CTX *sctx = Init();
55L #Fserver = SSL_new{Sctx};
BIO *sinbio = BIO new(BID s mem());
BIO *soutbio = BIO new(BIO s mem()

S5L_do_handshake(server);

SSL_free(server);

return ©;

¥

Source: http://tutorial.libfuzzer.info

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Topic: LibFuzzer vs.
OpenSSL (Heartbleed)

Runtime: 41 sec

Description: See how
LibFuzzer can be used
to find heartbleed In
several seconds.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Methods to measure code-coverage

2. Emulation of binary (e.g. with gemu)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

user@user-VirtualBox:~/test$ AFL NO ARITH=1 AFL PRELOAD=/home/user/test/libdislo
cator.so afl-fuzz -0 -x wordlist -i input/ -o output/ -- ./chat

american fuzzy lop 2.51b (chat)

0 days, 0@ hrs, 0 min, 17 sec

0 days, 0 hrs, 0 min, 1 sec 20
none seen yet 0
none seen yet 0

1 (5.00%) 0.09% / 0.30%
0 (0.00%) 1.27 bits/tuple

havoc 12 (60.00%)
152/768 (19.79%) 16 (80.00%)
33.3k 0 (0 unique)
1902/sec 0 (0 unique)

3/32, 1/30, 0/26 2

0/4, 0/2, 0/0 19

6/0, 0/0, 0/0 12
e/22, /0, 6/0 19
0/40, 2/60, 0/0 n/a
13/32.8k, 8/0 100.00%

n/a, 0.00%
309%

y
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public SEc Consult
© 2017 SEC Consult | All rights reserved 4

ADVISOR FOR YOUR INFORMATION SECURITY

user@user-VirtualBox:~/test$s AFL NO FORKSRV=1 AFL NO ARITH=1 AFL PRELOAD=/home/user/test/libdislo
cator.so afl-fuzz -x wordlist -Q -1 input/ -o output/ -- ./chat

american fuzzy lop 2.51b (chat)

0 days, 0 hrs,
0 days, 0 hrs,
none seen yet
none seen yet

0
0

havoc

6026/16.4k (36.78%)
6244

103.4/sec

3/16, 1/15, 0/13
0/2, 6/1, 0/0
e/6, 0/0, 6/0
0/9, 6/0, 0/0
0/20, 2/30, 0/0
0/0, 0/0

n/a, 0.00%

1 min, 0 sec
O min, 7 sec

0.20% / 0.27%
1.20 bits/tuple

1 (8.33%)

10 (83.33%)
0 (0 unique)
0 (0@ unique)

P

12

1

11

n/a
100.00%

209%

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

SEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

user@user-VirtualBox:~/test$ AFL NO ARITH=1 AFL PRELOAD=/home/user/test/libdislo
cator.so afl-fuzz -Q -x wordlist -i input/ -o output/ -- ./chat

american fuzzy lop 2.51b (chat)
days, 0 hrs, 52 min, 39 sec
hrs, 4 min, 45 sec

hrs, 18 min, 9 sec
yet

havoc

.4k f??uﬂnique)
(14 unique)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

Methods to measure code-coverage

3. Writing own debugger and set breakpoints on every basicblock (slow, but useful
INn some situations)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Topic: Breakpoint
Instrumentation of Adobe
Reader

Runtime: 3 min 59 sec

Description: See how to
use breakpoints and a
debugger to get code-
coverage. See limitations
of this approach.

Title: The Art of F

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

g| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Code-Coverage via Breakpoints

 Disadvantage:

* It's very slow

« Statically setting breakpoints can speedup the process, but it’s still
slow because of the debugger process switches

* Only really applicable if we remove a breakpoint after the first hit =»
We only measure code-coverage (without a hit-count), edge-
coverage not possible or extremely slow

» On-disk files are modified (statically), which can be detected with
checksums (e.g. Adobe Reader .api files)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Code-Coverage via Breakpoints

« Advantage:

« Minset calculation

« Detection if a new file has new code-coverage is very fast (native
runtime) because we statically set breakpoints for unexplored code
and run the application without a debugger

 If it crashes we know it hit one of our breakpoints and therefore
contains unexplored code

« Often useful during reverse engineering (E.g. dump registers at
every breakpoint, see later demo)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Methods to measure code-coverage

4. Dynamic instrumentation of compiled application (no source code required,;
tools: DynamoRio, PIN, Valgrind, Frida, ...)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Dynamic Instrumentation Frameworks

« Dynamic runtime manipulation of instructions of a running application!

« Many default tools are shipped with these frameworks
« drrun.exe —t drcov -- calc.exe
« drrun.exe —t my_tool.dll -- calc.exe
e pin -tinscount.so -- /bin/ls

« Register callbacks, which are trigger at specific events (new basic block / instruction which
gets moved into code cache, load of module, exit of process, ...)

« At callback (e.g. new basic block), we can further add instructions to the basic block which
get executed every time the basic block gets executed!

« Transformation time (Instrumentation Function): Analyzing a BB the first time (called once)
« Execution time (Analysis Function): Executed always before instruction gets executed

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

DynamoRIO

application code software

Transformation time

xecution time

DynamoRIO

indirect
branch
lookup

Source: The DynamoRIO Dynamic Tool Platform, Derek Bruening, Google

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

DynamoRIO

 For transformation time callbacks can be registered
 E.g..drmgr_register_bb_instrumentation_event()

 For execution time we have two possibilities
« Clean calls: save full context (registers) and call a C function (slow)

* Inject assembler instructions (fast)
» Context not saved, tool writer must take care himself
» Registers can be “spilled” (can be used by own instructions without losing old state)
« DynamoRio takes care of selecting good registers, saving and restoring them

« Nudges can be send to the process & callbacks can react on them
« Example: Turn logging on after the application started

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

DynamoRIO

« Example: Start Adobe Reader, load PDF file, exit Adobe Reader, extract coverage data
(Processing 25 PDFs with one single CPU core)

* Runtime without DynamoRio: ~30-40 seconds

« BasicBlock coverage (no hit count): 105 seconds
* Instrumentation only during transformation into code cache (transformation time)

« BasicBlock coverage (hit count): 165 seconds
* Instrumentation on basic block level (execution time)

« Edge coverage (hit count): 246 seconds

* Instrumentation on basic block level (many instructions required to save and
restore required registers for instrumentation code) (execution time)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

DynamoRio vs PIN

* PIN is another dynamic instrumentation framework (older)
« Currently more people use PIN (=» more examples are available)
 DynamoRio is noticeable faster than PIN

« But PIN is more reliable
 DynamoRio can'’t start Encase Imager, PIN can
 DynamoRio can’t start CS GO, PIN can
« During client writing | noticed several strange behaviors of DynamoRio

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Topic: Instrumentation of
Adobe Reader with
DynamoRio

Runtime: 2 min 31 sec

Description: Use
DynamoRio to extract code-
coverage of a closed-source
application using only a
simple command.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Topic: Determine Adobe
Reader “PDF loaded”
breakpoint with coverage
analysis.

Runtime: 1 min 08 sec

Description: Log coverage
of “PDF open” action to get a
breakpoint address to detect
end of PDF loading.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

WInAFL

 WInAFL - AFL for Windows
 Download: https://qgithub.com/ivanfratric/winafl
« Developed by Ivan Fratric

 Two modes:
« DynamoRio: Source code not required
« Syzygy: Source code required
« Alternative: You can easily modify WIinAFL to use PIN on Windows

* Windows does not use COW (Copy-on-Write) and therefore fork-like mechanisms are not
efficient on Windows!

* On Linux AFL heavily uses a fork-server
* On Windows WInAFL heavily uses in-memory fuzzing

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

https://github.com/ivanfratric/winafl

Title: The Art of F g| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Topic: Fuzzing mimikatz on
Windows with WInAFL

Runtime: 10 min 39 sec

Description: See the
WINAFL fuzzing process on
Windows of binaries with
source-code available In
action.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

BN mimikatz 2.1.1 %86 (ce.e0)

C:\UsersvnormalUser\DesktopZtest mimikatzireal mimikatz>mimikatz.exe

A Pid 2740 -
File Edit

JHHHE . Imimikatz 2.1.1 (%86) built on Aug 13 2017 17:27:38

CHE TOHH. H La Vie, H L Hmour

Cnmman HHt -"" \\ i "f* * o=

H4 \ / ## Benjamin DELPY ‘gentilkiwi® (benjamin@gentilkiwi.com)

ModLoad : | i Jen L1 vk
odload. | IR LS http:ffblog.gent11k1w1.comfmlmlkatg (oe.eo)
HodLoad: HEHEE with 21 modules = = =/
HodLoad:
HodLoad:

et llninikatz # sekurlsa: :minidump exploit.dmp

el owitch to MINIDUMP : exploit.dmp’
odLoad :
ModLoad: L
ﬁng%ﬁﬁ: mimikatz # sekurlsa::logonpasswords
el Jpening : ‘exploit.dmp’ file for minidump. ..
ModLoad: | -

HodLoad :
ModLoad :
ModLoad :
ModLoad :
ModLoad :
(abd fal): Access violation — code 0000005 (11! =zecond chance 111)

m

Sesemd ool shx=02hdl6hc ecx=00000004 ed=x=00000000 e=i=0010{d7c edi=006bfelf
=1p=41414141f8e=p= DDlDfd44 Ehp Q010£d4d50 1opl=0 nv up 21 pl Er na pe nc
= =0023 f==003b g==0000 efl=00010246

41414141 ¥7

L) 2

00005 |

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

y
@

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Methods to measure code-coverage

5. Static instrumentation via static binary rewriting (Talos fork of AFL which uses
Dynlinst framework — AFL-dyninst, should be fastest possibility if source code is
not available but it's not 100% reliable and currently Linux only); WIinAFL in
syzygy mode is very useful on Windows if source-code is available!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Methods to measure code-coverage

6. Use of hardware features
« IntelPT (Processor Tracing); available since 6 Intel-Core generation (~2015)

* WindowsiIntelPT (from Talos) or KAFL

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Fuzzer
Results

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Areas which influence fuzzing results

Fuzzer speed

Fuzzer
Results

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Fuzzer Speed

1. Fork Server
2. Deferred Fork Server
3. Persistent Mode (in-memory fuzzing)

4. Prevent process switches (between target application and the Fuzzer) by injecting the Fuzzer
code into the target process

5. Modify the input in-memory instead of on-disk
6. Use a RAM Disk

7. Remove slow API calls

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

GUI automation — Example HashCalc

H] HoshCae o o s

[ata Format: [ata:
ITe:-:t string LI Imy_input_string

K.ep Farmat: K.ey:

[HMaC ITe:-:t zhring ;I I

¥ MD5 | 4dbef ab5R9e275fc9be1 26067212404

v MD4 | 3129471 25021 do283HaBdc 2o 20022

¥ SHAT | 779da36i642d7 ac0dI6ea5b 33906 BebasT al3e

IV SHAZEE |613e01e97ddadfedB2e57130caba7 HefG04 7707 B deb3c 3929066037416
I~ SHAZRd |

V¥ SHAS12 [b37h7d171a2e02dBaf341 20671021 7186ebafbdh 31 dadb504d53ed476293eB4ashdd85 3046 7cI0Be0320:
I™ RIFEMD1EQ |

I~ PaMaMa |
™ TIGER |
I~ mMD2 |
I~ aDLER32 |

V¥ CRC3Z |2afff7d2

ellonkey!
r ehdule I

SlaveeSaft | Calculate I Cloze Help

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Question 1.
What is the maximum MD5
fuzzing speed with GUI
automation?

Question 2:
How many MD5 hashes can
you calculate on a CPU per
second?

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

WInAFL

« How to find the target function without source code?

1. Measure code coverage (drrun —t drcov) in two program invocations, one should
trigger the function, one not. Then substract both traces (IDA Pro lighthouse)

2. Log all calls and returns together with register and stack values to a logfile. Then
search for the correct input / output combination (IDA Pro funcap or a simple
DynamoRio / PIN tool)

3. Place memory breakpoints on the input

4. Use ataint engine (see later)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Topic: ldentification of target
function address of a closed-source
application (HashCalc).

Runtime: 10 min 15 sec

Description: Using reverse
engineering (breakpoints on function
level via funcap and DynamoRio with
LightHouse) to identify the target
function address.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Topic: In-memory fuzzing of
HashCalc using a debugger.

Runtime: 4 min 21 sec

Description: Using the identified
addresses and WinAppDbg we
can write an in-memory fuzzer to
Increase the fuzzing speed to 750
exec / sec!

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Topic: In-memory fuzzing of
HashCalc using DynamoRio.

Runtime: 2 min 58 sec

Description: Using the identified
addresses and DynamoRIio we
can write an in-memory fuzzer to
Increase the fuzzing speed to

170 000 exec / sec!

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

GUI automation

 HashCalc.exe MD5 fuzzing
e GUI automation with Autolt: ~2-3 exec / sec
* In-Memory with debugger: ~750 exec / sec

* In-Memory with DynamoRIio (no instr.): ~170 000 - 200 000 exec / sec

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Input filesize

Fuzzer
Results

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Input file size

 The input file size is extremely important!

« Smaller files
« Have a higher likelihood to change the correct bit / byte during fuzzing
» Are faster processed by deterministic fuzzing
» Are faster loaded by the target application

« AFL ships with two utilities
* AFL-cmin: Reduce number of files with same functionality

« AFL-tmin: Reduce file size of an input file
« Uses a “fuzzer” approach and heuristics
* Runtime depends on file size
* Problems with file offsets

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Input file size

« Example: Fuzzing mimikatz

 Initial memory dump: 27 004 528 Byte
 Memory dump which | fuzzed: 2 234 Byte

= I’'m approximately 12 000 times faster with this setup...

* You would need 12 000 CPU cores to get the same result in the same time as my
fuzzing setup with one CPU core

« Or with the same number of CPU cores you need 12 000 days (~33 years) to get the
same result as | within one day

* In reality it's even worse, since you have to do everything again for every queue entry
(exponential)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public N I
©4 SEC Consult

© 2017 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public N I
©4 SEC Consult

© 2017 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

See below link for in-depth discussion how | fuzzed mimikatz with WinAFL.:

-

X mimikatz 2.1.1 x86 (oe.e0)

C:\Users\normalUser\Desktophtest mimikatz\real mimikatz>mimikatz.exe

Pid 2740 - — :
%ﬂ e JHHHE . Imimikatz 2.1.1 (x86) built on Aug 13 2017 17:27:38
RSl HH TR H La Vie, H L Hmour
5 commed AR I
el Hit \ / ## Benjamin DELPY ‘gentilkiwi’ [benjamin@gentilkiwi.com)
Hodlosd | EIEGIRVIRL N http://blog.gentilkiwi.com/mimikatz {oe.eo)
ModLoad: il with 21 modules = = =/
ModLoad:
HodLoad: L .. .
et lliminikatz # sekurlsa::minidump exploit.dmp
atraaellSwitch to MINIDUMP : "exploit.dmp’
odLoad :
HodLioad : Lo
ellIninikatz # sekurlsa::logonpasswords
raesaeslOpening @ ‘exploit.dmp’ file for minidump. ..
HodLoad ; | -
HodLoad:
HodLoad:
HodLioad :
HodLoad:
ModLoad:
(abd fa0): Access wiolation — code 0000005 (11l second chance 111) E
22200000000 ~he=02b406be ecx=00000004 =dx=00000000 esi=0010fd7c edi=00&bfa2@ 3
|E&p=41414141 e=p=0010fd44 =bp=0010£d450 iopl=0 nv up =21 pl zr na pe nc
SpE—— 53— [) -0022 £=-003b g=-0000 =f1-00010246
41414141 77 ???i
4 Inr [
[0 000> |

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

4

ADVISOR FOR YOUR INFORMATION SECURITY

https://www.sec-consult.com/en/blog/2017/09/hack-the-hacker-fuzzing-mimikatz-on-windows-with-winafl-heatmaps-0day/index.html

Creation of heatmaps

« For mimikatz | used a WinAppDbg script to extract file access information
« Very slow approach because of the Debugger
« Can't follow all memory copies =» Hitcounts are not 100% correct

« Better approach: Use dynamic instrumentation / emulation
« libdft
e Triton
 Panda
* Manticore
« Own PIN / DynamoRio tool

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

How my tool for heatmap creation work

1. Inject assembler instructions in front of all relevant application instructions (memory
or register operations); Don’t use clean calls because they are slow!

2. These instructions fill a buffer with “access struct” entries with the source (address
or register id), the destination, the size and the semantic

« Move semantic: mov [0x12345678], eax
 Union semantic: add EAX, [EBX]
 Untaint semantic: mov EAX, 0x12345

* Increment hitcount semantic: cmp, test, ..

3. After the (thread-specific) buffer is full, a clean call is made to process the access
data, “timestamps” are used for multi-threaded applications

4. Shadow memory (1 byte to 1 bit) is used to indicate if a byte is tainted or not

5. AVL-like (balanced) tree is used to store a mapping from tainted memory ranges to
the associated file offsets (to count hit counts for file offsets)

Title: The Art of F
© 2017 SEC Consult | All rights reserved

g| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Combine Call-Graph with Taint-Analysis

=>» We can write a DynamoRIo/PIN tool which tracks calls and taint status

=> Automatically detect target fuzz function
_start

Target
Function
to fuzz

access acCCess

func6 func? func8 func9

aCCess aceess acCCess

aCCesSs

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public ‘@'
© 2017 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

Fuzzing with taint analysis

1. Typically byte-modifications are uniform distributed over the input file
2. With taint analysis we can distribute it uniform over the tainted instructions!

If this sets EFLAGS and can change
a cc jump, it should give an extra boost...

20 Mutations\s

50 Mutations

20 Mutations

20 Mutations

20 Mutations 20 Mutations

20 Mutations 10 Mutations

20 Mutations 0 Mutations

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Maybe don‘t fuzz this at all
X2 is maybe a

Instruction X1: Read byte 2 COPY / séarch function
Instruction X2: Read byte 1,2,3,4
Instruction X3: Read byte 2

Instruction X4: Read byte 1,2
Instruction X5: Read byte 2,3

Byte 1 read by 2 instructions 2/10 = 20%
Byte 2 read by 5 instructions 5/10 = 50%
Byte 3 read by 2 instruction 2/10 = 20%
Byte 4 read by 1 instruction 1/10 = 10%

Byte 5 read by O instructions 0/10 = 0%

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

=>» Automatically detect target fuzz function

=» Taint engine can be used on first fuzz iteration =» All writes can be logged with the address to
revert the memory state for new fuzz iterations

=> Enable taint engine logging only for new code coverage = Automatically detect which bytes make
the new input unigue and focus on fuzzing them!

=» Call-instruction logging can be used to find interesting functions
« Malloc / Free functions (to automatically change to own heap implementation)
« Own heap allocator can free all chunks allocated in a fuzz iteration =» No mem leaks
« Better vulnerability detection (see later slides)
« Compare functions =» Return the comparison value to the fuzzer
* Checksum functions = Automatically “remove” checksum code
« Error-handling functions
= Focus fuzzing on promising bytes

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Fuzzer
Results

Mutators

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

AFL Mutation

 AFL performs deterministic, random, and dictionary based mutations
« AFL has a very good deterministic mutation algorithms

« Deterministic mutation strategies:

« Bitflips
» single, two, or four bits in a row
» Byte flips

» single, two, or four bytes in a row
« Simple arithmetics
* single, two, or four bytes
« additions/subtractions in both endians performed
* Known integers
« overwrite values with interesting integers (-1, 256, 1024, etc.)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

AFL Mutation

 Random mutation strategies performed for an input file after
deterministic mutations are exhausted.

« Random mutation strategies:

e Stacked tweaks
» performs randomly multiple deterministic mutations
« clone/remove part of file

« Test case splicing

» splices two distinct input files at random locations and joins
them

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

« Radamsa is a very powerful input mutator
« |f you don't want to write a mutator yourself, just use radamsa!

user-VirtualBox# echo "testlinl23%nbla‘

echo "testl\nl23\nbla\

user-VirtualBox# echo "testl\nl23\nbla\
test1BabbBOG13
%2

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

https://github.com/aoh/radamsa

 Problem of radamsa: External program execution is slow (no library support)
« Already submitted by others as issue: https://github.com/aoch/radamsal/issues/28

« Example: Our SECCON CTF fuzzer for the chat binary

« Test 1: Before every execution we mutate the input with a call to radamsa
* Result: Execution speed is ~17 executions per second

« Test 2: Mutate input with python (no radamsa at all)
* Result: Execution speed is ~740 executions per second

« =» Always create multiple output files (e.g.: 100 or 1000) or use IP:Port output

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

https://github.com/aoh/radamsa/issues/28

« Testcases as input:

testl.txt

e
LM
~+
|'T:l

D w D
M 0o

LN I—I"
~+
|'T:l

regl
userds

Login

userl

send private message

userz2
Content of
lLogout

test2.txt
register
users3
login
users3

delete user

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

test3.txt
register
userd
login
userd
view messages
lLogout

ADVISOR FOR YOUR INFORMATION SECURITY

« Often seen wrong use of radamsa: FA

T
T

user-VirtualBox# ./radamsa testl.txt -0 mutatedl.t
user-VirtualBox# ./radamsa test2.txt -0 mutated?

.
user-VirtualBox# ./radamsa test3.txt -0 mutated3.txt

lLogin
users3
Only variations of login
the current input file user3

deletete user

A
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public M
[)

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

« Correctinvocation: Always generate multiple %
outputs (100 or 1000; 100 is

recommended by radamsa) Possible output

./radamsa test®. txt SR 1BBE" -0 mutated%n.txt JFOUND output (after 52345 executions)
register
userl
register
user?

: : login

Combination of yserl

multiple input files! send private message
user<
Content of message
delete user
However, merging of multiple input files is very Login
unlikely (“send msg + delete user + view msg” will —
not be found within 2 hours)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

* Correct selection of mutators (Example of the “chat” target):

user-VirtualBox% ./radamsa -1
Mutations (-m)

ab: enhance silly issues in ASCII string data handling

bd: drop a byte

bf: flip one bit

bi: insert a random byte

br: repeat a byte

bp: permute some bytes

bei: increment a byte by one

bed: decrement a byte by one

ber: swap a byte with a random one

sr: repeat a sequence of bytes

sd: delete a sequence of bytes

ld: delete a line

lds: delete many lines

Lr2: duplicate a line

li: copy a line closeby

Lr: repeat a line

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

fn:
fo:

nop

swap two lines

swap order of lines

insert a line from elsewhere

replace a line with one from elsewhere
delete a node

duplicate a node

swap one node with another one

swap two nodes pairwise

repeat a path of the parse tree
try to make a code point too wide
insert funny unicode

try to modify a textual number
try to parse XML and mutate it

jump to a similar position in block
Likely clone data between similar positions
fuse previously seen data elsewhere

: do nothing (debug/test)

SEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

« Radamsa is written in Owl Lisp (a functional dialect of Scheme)
* Modifying the code is hard (at least for me because | don’t know Owl Lisp)
e Currently no library support ® (= Slower than in-memory mutation)
« Good mutation and gramma detection (~ 3500 lines)
« Maintained
 Niis writtenin C
« Simple to modify, add to own project or compile as library (and it's fast)
° (from the same guys) FOUND output (after 11450 executions)
 Not as advanced as radamsa ® (~800 lines) cgrater
* Not maintained: Last commit 2014

Ni can also merging multiple inputs
9 Other inputs are On|y Used during “I'andOm_b|OCk()” function send p rivate message

= Merging / Gramma detection not so advanced as with radamsa user3
delete user

A
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public M
[)

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

https://github.com/aoh/ni

Speed comparision

« The following table gives a speed comparison between different test setups for
mutating data

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Numbers in the table are generated testcases per second

Table does not contain fuzzing or file read/write times (only generation of fuzz data)
TC stands for number of test cases

RD stands for RAM disk for files & programs

Test program was a Python script

Radamsa fast mode uses the following mutators:
* -m bf,bd,bi,br,bp,bei,bed,ber,sr,sd
« Taken from FAQ from htips://github.com/aoh/radamsa

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

https://github.com/aoh/radamsa

Speed comparision — input small text files

Type of test Radamsa fast ext. Ni library (ctypes)

Input stdin (1 tc), output
stdout (1 tc)

Input files (3 tc), output
stdout (1 tc)

Input files (3 tc), output via
files (100 tc)

Input via files (3 tc), output
via files (1000 tc)

Input files (3 tc), output via
files (100 tc); RD

Input files (3 tc), output via
files (1000 tc); RD

Input 3 samples, output
one (all in-memory)

~ 265

~ 255

~1100

~1100

~1220

~1230

~ 345

~300

~1930

~2150

~2740

~3100

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

(no stdin support)
~775
~7300
~8350
~7300

~8400

ADVISOR FOR YOUR INFORMATION SECURITY

The problem of the search space

The following input triggers the second Use-After-Free flaw in the chat binary:

Depth 1 , :
P register send private message

userl user’Z
register Depth 1Ocontent
user’Z —pdelete user
login login

Depth 6 J 1 J 5

—>user user
Depth 13

—p V1eWw messages

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

The problem of the search space

empty

<empty>

register user2 register

register register
- userl

register
userl
register

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

register

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

The problem of the search space

« We need at least 7 distinct inputs to find the flaw (register, userl, user2, login,
send_private_message, delete user, view _message)

« During real fuzzing we have way more inputs (all possible commands, special
chars, long strings, special numbers,)

« After every input line we can again select one from the 7 possible inputs
 We have to find 13 inputs in the correct order to trigger the bug!
 For 13 inputs we have 7213 = 96 889 010 407 possibilities

= Runtime of the Fuzzer to find this flaw?

=» This is also a huge difference to file format fuzzing! File format fuzzing does not
produce such huge search spaces, because “commands” can’t be sent at every
node in the tree! (Nodes have less children)

=>» AFL is not the best choice to fuzz such problems

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

The problem of the search space

= We must reduce the search space!

 Initial Start-Sequence (Create Users) (This can be seen as our “input corpus”)
 [|nitial End-Sequence (Check public and private messages of all users)
« Encode the format into the fuzzer
 Example: send_message(username, random_string_msg))
« =» Peach Fuzzer
« But that was basically what we wanted to avoid (Fuzzer should work without modification)
* |Instead of adding one command per iteration, add many commands (inputs)

« Same when fuzzing web browsers =» Add thousands of html, svg, JavaScript, CSS, ...
lines to one test case and check for a crash

« Important: Too many commands can create invalid inputs (e.g. invalid command = Exit
application)
« Additional feedback to “choose” promising entries (E.qg.: prefer text output which was not
seen yet, prefer fuzzer queue entries which often produce new output, ...)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

The problem of the search space

The following input triggers the second Use-After-Free flaw in the chat binary:

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

send private message
userz

content

delete user

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Topic: Fuzzing SECCON CTF
binary (text feedback)

Runtime: 3 min 21 sec

Description: See how we can
enhance the Fuzzer to find the
3'd (deep) use-after-free bug!

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

* Runtime to find the deep second UAF (Use-After-Free) vulnerabiltiy...

user@user-VirtualBox:~/test$ python fuzzer2.py
~Cueue: 528, runtime: 7/ Sec, execs: 2774, exec/sec: 357.80, crashes: 21 BOF [+],UAF1 [-],UAF2 [+]

User hit ctrl+c, stopping execution...

user@user-VirtualBox:~/test$ python fuzzer2.py
~Cueue: 8380, fruntime: 141 sec, execs: 54058, exec/sec: 382.46, crashes: 255 BOF [+],UAF1l [-],UAF2 |+]

User hit ctrl+c, stopping execution...

user@user-VirtualBox:~/test$ python fuzzer2.py
~“Cueue: 2732, 'runtime: 55 sSec, execs: 18732, exec/sec: 339.05, crashes: 156 BOF [+],UAF1l [-],UAF2 |+]

User hit ctrl+c, stopping execution...

user@user-VirtualBox:~/test$ python fuzzer2.py
~Cueue: 8621, fruntime: 166 Sec, execs: 61845, exec/sec: 370.68, crashes: 351 BOF [+],UAF1l [-],UAF2 |+]

User hit ctrl+c, stopping execution...

 UAF1 was removed from patched binary because UAF1 would trigger before UAF2
* This fuzzer also works for any other CTF binary!!

4
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public m
=4

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Areas which influence fuzzing results

Fuzzer
Results

Detection rate

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Detecting not crashing vulnerabllities

=» Did you notice, that we triggered 3 (!) not crashing vulnerabilities during the ,chat”
Introduction demo?

=>» And we didn‘t really see one of the bugs!
=» Our Fuzzer would also not see the bugs...

=» Other real world example: Heartbleed is a read buffer overflow and does not lead
to a crash...

=» We (the Fuzzer) need a way to detect such flaws / vulnerabilities!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Heap Overflow Detection

Page (4096 byte), read- & write-able

Meta Meta

Data Heap Data 1 Data Heap Data 2

—
Heap Overflow

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Heap Overflow Detection

Page (4096 byte)
NOT read- & write-able

Meta

: Heap Data 1
Unused (special pattern) Data

—
Heap Overflow

Page (4096 byte)
NOT read- & write-able

Meta
Unused (special pattern) Data

Heap Data 2

_

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Use-After-Free Detection

Page (4096 byte)
NOT read- & write-able

Meta
Unused (special pattern) Data

Heap Data 1

_

FREE

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Use-After-Free Detection

Page (4096 byte) Page (4096 byte)
NOT read- & write-able NOT read- & write-able

Meta

Data Heap Data 1

Access attempt
Access attempt

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Heap Library

« Libdislocator (shipped with AFL) implements exactly this

/* We will also store buffer length and a canary below the actual buffer, so
let's add 8 bytes for that. */

ret = mmap (NULL, (! PG COUNT (len + ©)) * PAGE SIZE, PROT READ | PROT WRITE,

MAFP PRIVATE | MA .) ;

if (ret == (void*)-1) ({ One extra page
if (hard fail) FATAL("mmap() failed on alloc (0OM?)"); which is not RW
DEBUGF ("mmap () failed on alloc (OOM?)");
return NULL;

}

/* Set PROT NONE on the last page. */

if (mprotect(ret + PG COUNT(len + ©) * PAGE SIZE, PAGE SIZE, PROT NONE))
FATAL ("mprotect () failed when allocating memorvy") ;

 We can also set AFL__ HARDEN=1 before make (Fortify Source & Stack Cookies)

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

user@user-VirtualBox:~/test$ LD PRELOAD=/home/user/test/libdislocator.so ./chat
Simple Chat Service

1 : Sign Up 2 : Sign In

0 : Exit

menu > 1

name > 3
Success!
enu > 2

ame > a
ello, a!
Service Menu
: Show TimelLine 2 : Show DM 3 : Show UserslList
: Send PublicMessage 5 : Send DirectMessage
: Remove PublicMessage 7 : Change UserName
: Sign Out
enu >> 7/
ame >> abc
Speicherzugriffsfehler (Speicherabzug geschrieben

y
Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public SEc Consult
© 2017 SEC Consult | All rights reserved 4

ADVISOR FOR YOUR INFORMATION SECURITY

1 : Show TimelLine 2 : Show DM 3 : Show UsersList
4 : Send PublicMessage 5 : Send DirectMessage

6 : Remove PublicMessage 7 : Change UserName
O : Sign Out

menu >> 7/

name >> X

Change name error.

Speicherzu rlffsfehler (Speicherabzu eschrieben)

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

A
@

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Topic: Mimikatz vs.
GFlags & Application
Verifier with PageHeap on
Windows

Runtime: 3 min 15 sec

Description: See how to
find bugs by just using the
application and enabling
the correct verifier settings.

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Detecting not crashing vulnerabllities

« LLVM has many useful sanitizers!

« Address-Sanitizer (ASAN)

» -fsanitize=address

« QOut-of-bounds access (Heap, stack, globals), Use-After-Free, ...
Memory-Sanitizer (MSAN)

« -fsanitize=memory

* Uninitialized memory use
« UndefinedBehaviorSanitizer (UBSAN)

« -fsanitize=undefined

« Catch undefined behavior (Misaligned pointer, signed integer overflow, ...)

« DrMemory (based on DynamoRio) if source code is not available

=2 Use sanitizers during development !!!

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Detecting not crashing vulnerabllities

 During corpus generation don’t use sanitizers = performance
« After we have a good corpus, start fuzzing it with sanitizers / injected libraries

« | prefer heap libraries because they are faster and run after the first fuzzing
session the corpus against binaries with sanitizers for some days

| don’t use heap libraries for the master fuzzer (deterministic fuzzing must be fast)

« AFL performance example; one core; no in-memory fuzzing:
 X64 binary: 1400 exec / sec
 x86 binary: 1200 exec / sec
« x86 hardened binary: 1150 exec / sec
« x86 hardened binary + libdislocator: 600 exec / sec
« x86 binary with Address Sanitizer: 200 exec / sec

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Detecting not crashing vulnerabllities

« Change the heap implementation to check for dangling pointers AFTER a
free() operation! (similar to MemGC)

« Check all pointers in data section, heap and stack if they point into memory
 Check must only be performed one time for new queue entries

send private message

Free() user?
Detection here! content
—) delete user

login

Use after free ~ USE€T?2
—) V1CW MESSAJES

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Overview: Areas which influence fuzzing results

Fork-server

Faster instrumentation code
Static vs. Dynamic
Instrumentation

In-memory fuzzing

NO process switches

Fuzzer speed Input filesize

Fuzzer
Results

Page heap / Heap libs
Sanitizers (ASAN, MSAN,
SyzyASan, DrMemory, ..)
Dangling Pointer Check
Writeable Format Strings Check

Detection rate Mutators

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

AFL-tmin & AFL-cmin
Heat maps via

Taint Analysis and
Shadow Memory

Application aware mutators
Generated dictionaries

Append vs. Modify mode
Grammar-based mutators

Use of feedback from application

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Some public fuzzing numbers

Some public fuzzing numbers

 Example: Talk by Charlie Miller from 2010 ,Babysitting an Army of Monkeys"
 Fuzzed Adobe Reader, PPT, OpenOffice, Preview

« Strategy: Dumb fuzzing
« Download many input files (PDF 80 000 files)
« Minimal corpus of input files with valgrind (PDF 1515 files)
 Measure CPU to know when file parsing ended
* Only change bytes (no adding / removing)
 Simple fuzzerin 5 LoC

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

Fuzzer:

numwrites=random.randrange(math.ceil((float(len(buf)) / FuzzFactor)))+1for j in
range(numwrites):.rbyte = random.randrange(256)rn =
random.randrange(len(buf))buf[rn] = "%c"%(rbyte);

numwrites=random.randrange(math.ceil((float(len(buf)) / FuzzFactor)))+1for j in
range(numwrites):rbyte = random.randrange(256)rn =
random.randrange(len(buf))buf[rn] = "%c"%(rbyte);

Source: Charlie Miller ,Babysitting an Army of Monkeys*

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

Results:
« 3 months fuzzing
e 7 Million Iterations

Crashes with unique EIP:

Source: Charlie Miller ,,Babysitting an Army of Monkeys*

Reader ;
Preview

OpenOffice e Crashes per unique crash
PowerPoint

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public
© 2017 SEC Consult | All rights reserved

ADVISOR FOR YOUR INFORMATION SECURITY

Some public fuzzing numbers

Other numbers from Jaanus Kaap:

» https://nordictestingdays.eu/files/files/jaanus _kaap fuzzing.pdf

« Code coverage for minset calculation (no edge coverage because of speed)
« PDF => initial set 400 000 files =» Corpus 1217 files

« DOC => initial set 400 000 files =» Corpus 1319 files

« DOCX => initial set 400 000 files =» Corpus 2222 files

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

https://nordictestingdays.eu/files/files/jaanus_kaap_fuzzing.pdf

Some public fuzzing numbers

Google fuzzed Adobe Flash in 2011

,What does corpus distillation look like at Google scale? Turns out we have a
large index of the web, so we cranked through 20 terabytes of SWEF file
downloads followed by 1 week of run time on 2,000 CPU cores to calculate the
minimal set of about 20,000 files. Finally, those same 2,000 cores plus 3 more
weeks of runtime were put to good work mutating the files in the minimal set
(bitflipping, etc.) and generating crash cases. “

The initial run of the ongoing effort resulted in about 400 unique crash signatures,
which were logged as 106 individual security bugs following Adobe's initial triage.

e Source: https://security.gooqgleblog.com/2011/08/fuzzing-at-scale.html

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

https://security.googleblog.com/2011/08/fuzzing-at-scale.html

Some public fuzzing numbers

Google fuzzed the DOM of major browsers in 2017:

https://qooqgleprojectzero.blogspot.co.at/2017/09/the-great-dom-fuzz-off-of-2017.html

We tested 5 browsers with the highest market share: Google Chrome, Mozilla Firefox_ Internet Explorer,
Microsoft Edge and Apple Safan. We gave each browser approximately 100 000 000 iterations with the
fuzzer and recorded the crashes. (If we fuzzed some browsers for longer than 100.000.000 terations, only
the bugs found within this number of iterations were counted in the results.) Running this number of
iterations would take too long on a single machine and thus requires fuzzing at scale, but it is still well within
the pay range of a determined attacker. For reference. it can be done for about $1k on Google Compute
Engine given the smallest possible VI size, preemptable ViVs (which | think work well for fuzzing jobs as
they don't need to be up all the time)/and 10 seconds par run.

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

https://googleprojectzero.blogspot.co.at/2017/09/the-great-dom-fuzz-off-of-2017.html

Fuzzing rules

Start fuzzing!

Start with simple fuzzing, during fuzzing add more logic to the next fuzzer version
Use Code/Edge Coverage Feedback

Create a good input corpus (via download or feedback)

Minimize the number of sample files and the file size

Use sanitizers / heap libraries during fuzzing (not for corpus generation)

Modify the mutation engine to fit your input data

Skip the “initialization code” during fuzzing (fork-server, persistent mode, ...)

Use wordlists to get a better code coverage

10. Instrument only the code which should be tested

11. Don'’t fix checksums inside your Fuzzer, remove them from the target application (faster)
12. Start fuzzing!

© 0N Ok WDNPRE

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

P4 sEC Consult

ADVISOR FOR YOUR INFORMATION SECURITY

© 2017 SEC Consult | All rights reserved

A last hint...

Fuzzing can show the presence bugs
but can’t prove the absence of bugs!

Thank you for your attention!

I wrote a vulnerability

scanner that abstracts He wrote a dumb ass
all the predicates in a fuzzer and found 5
binary, traverses the vulns in 1 day.

callgraph and generates
phormulaes to run then
with a SMT solver.
I found 1 vuln in
3 days with this tool.

Good thing I'm
not a n00b like
that guy.

Source: Twitter

A
1@?

© 2017 SEC Consult | All rights reserved
ADVISOR FOR YOUR INFORMATION SECURITY

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

For any further questions contact

your SEC Consult Expert.

René Freingruber
@ReneFreingruber

r.freingruber@sec-consult.com

+43 676 840 301 749

SEC Consult Unternehmensberatung GmbH

Mooslackengasse 17
1190 Vienna, AUSTRIA

WWW.Ssec-consult.com

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

A
1@?

ADVISOR FOR YOUR INFORMATION SECURITY

https://twitter.com/renefreingruber?lang=de
mailto:r.freingruber@sec-consult.com
http://www.sec-consult.com/

SEC Consult in your Region.

AUSTRIA (HQ)

SEC Consult Unternehmensberatung GmbH
Mooslackengasse 17
1190 Vienna

Tel +43 1890 30430
Fax +43 1 890 30 43 15
Email office@sec-consult.com

LITHUANIA

UAB Critical Security, a SEC Consult company
Sauletekio al. 15-311
10224 Vilnius

Tel +370 5 2195535
Email office-vilnius@sec-consult.com

RUSSIA

CJCS Security Monitor

5th Donskoy proyezd, 15, Bldg. 6
119334, Moscow

Tel +7 495 662 1414

Email info@securitymonitor.ru

GERMANY

SEC Consult Deutschland
Unternehmensberatung GmbH
Ullsteinstral3e 118, Turm B/8 Stock
12109 Berlin

Tel +49 30 30807283
Email office-berlin@sec-consult.com

SINGAPORE

SEC Consult Singapore PTE. LTD
4 Battery Road

#25-01 Bank of China Building
Singapore (049908)

Email office-singapore@sec-consult.com

THAILAND
SEC Consult (Thailand) Co.,Ltd.

29/1 Piyaplace Langsuan Building 16th Floor, 16B

Soi Langsuan, Ploen Chit Road
Lumpini, Patumwan | Bangkok 10330

Email office-vilnius@sec-consult.com

Title: The Art of Fuzzing| Responsible: R. Freingruber | Version / Date: V1.0/2017-11 | Confidentiality Class: public

© 2017 SEC Consult | All rights reserved

SWITZERLAND

SEC Consult (Schweiz) AG
Turbinenstrasse 28

8005 Zlrich

Tel +41 44 2717770

Fax +43 1 890 30 43 15

Email office-zurich@sec-consult.com

CANADA

i-SEC Consult Inc.
100 René-Lévesque West, Suite 2500
Montréal (Quebec) H3B 5C9

Email office-montreal@sec-consult.com

©r

ADVISOR FOR YOUR INFORMATION SECURITY

